
Team Research Report

Nao-Team HTWK

January 2018

1

Contents

1 Team members and affiliations 3

2 Notable work and fields of interest 3
2.1 Team Strategy . 3

2.1.1 2017 Dribbling Modifications . 4
2.2 Vision . 5

2.2.1 HTWKVision Library . 5
2.2.1.1 Key Features . 6
2.2.1.2 Field Color Detection . 6
2.2.1.3 Scanline Classification . 7
2.2.1.4 Field Border Detection . 7
2.2.1.5 Line Detection . 8
2.2.1.6 Ellipse Fitting of Center Circle . 8
2.2.1.7 Goal Detection . 9
2.2.1.8 Near Obstacle Detection . 9

2.2.2 Black and White Ball Detection . 9
2.2.2.1 Hypotheses Generation . 9
2.2.2.2 Hypotheses Classification . 10
2.2.2.3 Robot Detection . 11

2.3 Relative Multi-Target World Model . 12
2.4 Infra-Red Data Transmission . 13
2.5 Localization . 13
2.6 Walking Engine . 13
2.7 NaoControl . 13
2.8 Motion Editor . 14
2.9 Architecture . 15

2.9.1 NIO Framework . 15
2.9.2 Multiple agent system to determine the optimal short term strategy 15
2.9.3 Intra-robot communication . 16
2.9.4 Wiimote control . 16

2

1 Team members and affiliations

Rico Tilgner, M. Sc., HTWK Leipzig
Thomas Reinhardt, M. Sc., HTWK Leipzig
Tobias Kalbitz, M. Sc., HTWK Leipzig
Stefan Seering, B. Sc., HTWK Leipzig
Michael Wünsch, M. Sc., HTWK Leipzig
Jörg Schließer, B. Sc., HTWK Leipzig
Florian Mewes, M. Sc., HTWK Leipzig
Sascha Haßler, Undergrad, HTWK Leipzig
Anne Wissing, B. Sc., HTWK Leipzig
Tobias Jagla, M. Sc., HTWK Leipzig
Kai Dawidowski, Undergrad, HTWK Leipzig
Marcel Göbe, B. Sc., HTWK Leipzig
Philipp Freick, M. Sc., HTWK Leipzig
Stephan Bischoff, B. Sc., HTWK Leipzig
Tom Burke, M. Sc., HTWK Leipzig
Samuel Eckermann, M. Sc., HTWK Leipzig
Daniel Weiß, Undergrad, HTWK Leipzig

2 Notable work and fields of interest

2.1 Team Strategy

Our full 2016 team strategy is available as Open Source at
https://github.com/NaoHTWK/HTWKStrategy.
It contains the strategy used during the 2016 competition as well as a debugging tool that allows for
easy evaluation.
The advanced development within the basic soccer regions (for example ball skills and coordination)

allows to make a new step in the SPL to create a human-like soccer gameplay. The use of a static
teamstrategy gives a constant gameplay, which is suitable for testing and improving basic soccer skills.
But to hold a competitive ability and to reach a manlike soccer gameplay, a new approach is needed.
Each player must be able to make a decision for a optimal position to occupy depending on the current
game situation. Additionally a player has to react and interact with all other players on the field.
To realize such a behavior only a dynamic teamstrategy can be a solution. The graduation work in
[3] (language: German) shows the development of the above described dynamic teamstrategy. The
problem of dynamics (to find an optimal position) is considered as an “optimization problem” and is
solved by an optimizer and an evaluation function. The main objective of the teamstrategy is the
development of a defensive and offensive position finding behavior.

3

http://

Figure 1: Offensive and Defensive Player Positioning

2.1.1 2017 Dribbling Modifications

During Robocup 2017 in Nagoya we realized, that our walking engine could not handle shooting motions
on the new carpet well. This gave us a huge disadvantage because our team strategy was specialized
on passing and shooting. To stay competitive, we decided at the end of the second round robin to
develop a new team strategy, which is specialized on a dribbling only behaviour. This new dribbling
team strategy uses one robot which shadows the attacking player and two seperate defined areas to
defend.

4

Figure 2: Range of shadow system, defined defender areas

The shadow system consists of one player, who is dribbling the ball (striker), and an additional
player, who stays within a one meter range around the striker (shadow). In case, that the striker loses
the ball - because of falling or another reason, the shadow will always be near to increase the chance
of getting the ball back. The two defined defender areas are used to hinder long shot ranges and to
spread team players over the whole team fieldside. To have as much players as possible to defend, the
shadow is able to switch to the defending behavior. As used in the older team strategies, all players
can switch between behaviors depending on the position of all team mates.

2.2 Vision

The identification of the field, field features and objects on it is an essential part of playing soccer.
The biggest problem for most color-table based methods are the inability to cope with changing light
conditions and the need to generate the color-table, which can be very time consuming. Changing
lighting conditions (e.g. between daylight and artificial light as seen with the 2016 outdoor challenge)
make it impossible to classify objects solely based on their color. Also the introduction of a black and
white ball for the 2016 season prevents purely color-table based methods. Therefore, a real-time capable
object detection with no need for calibration would be advantageous. By applying the knowledge of the
objects’ shapes we developed several specialized object detection algorithms that can handle changing
light conditions and colors robustly without the need for prior calibration.

2.2.1 HTWKVision Library

Our full 2017 HTWKVision library is available as Open Source at
https://github.com/NaoHTWK/HTWKVision.

5

http://

It contains many performance improvements and new or improved functionality compared to the 2015
version.
Please be aware that it does not contain a pretrained net for the ball detection but all tools necessary
to train new nets based on labelled data. Teams interested in using our labelled images or nets can
contact us at naohtwk@gmail.com.

2.2.1.1 Key Features

• simple to integrate

• no external dependencies

• fast 2x30fps on Nao

• no calibration needed

• good detection rates and accuracies

• simple demo program included

2.2.1.2 Field Color Detection We reworked our field color detector completely in 2015. It is now
based on machine learning algorithms and is able to extract the correct field color completely auto-
matically in a wide range of different and even adversarial lighting conditions. The algorithm uses
a dynamic YCbCr-cube size estimation for green classification. Offline training using CMA-ES opti-
mization has been performed using labeled color settings from 300 different images from SPL events
between 2010 and 2017. The evaluation of the algorithm was performed on a set of 200 additional
labelled images.

Figure 3: Automatically detected field color

6

2.2.1.3 Scanline Classification For several subsequent detection steps a scanline based image classi-
fication algorithm is used to detect white, green and unknown segments. Both vertical and horizontal
scanlines are used to decompose the camera image.

Figure 4: Scanline Classification

2.2.1.4 Field Border Detection The field border detection algorithm estimates the position of the
upper field border by analyzing vertical scanlines and searching linear relation of their green to unknown
class transitions. A model of two straight lines are matched using a variant of ransac algorithm.

Figure 5: Field Border Detection (white line)

7

2.2.1.5 Line Detection The line detection algorithm uses the horizontal and vertical scanline clas-
sification results to group white region together under some constraints.

Figure 6: Line Detection

2.2.1.6 Ellipse Fitting of Center Circle We are using an ellipse fitting method to precisly detect the
inner and outer edge of the center circle.

Figure 7: Center Circle Detection

8

2.2.1.7 Goal Detection The change in rules to use white goals instead of yellow goals necessitated
a complete rethink of our goal detector.
The currently used goal detector first generates goal post candidates by analyzing vertical gradients
just above and below the field border. We then extract 14 geometrical features from each of these
candidates and evaluate them using a neural network. The features are independent of color and
brightness which enables a calibration free detection in varying lighting conditions.

Figure 8: Goal Detection

2.2.1.8 Near Obstacle Detection This new module detects robots that are very close (less than
2m), even when we can only see their white feet in the lower camera image. It generates a relatively
simple model for obstacle detection using pixel groups with high variation and differences w.r.t. the
field color.

2.2.2 Black and White Ball Detection

As a development in difficulty the SPL changed the orange streethockey ball that has been used since
2010 to a ball with a black and white classic soccer ball pattern.
Our 2016 ball detection algorithm uses 2 phases: hypotheses generation using an integral image and
hypotheses classification using a deep convolutional neural network. This achieves a very high hitrate
and precision while being runtime efficient enough to run in real-time on the Nao.

Figure 9: Hypotheses Generation, original image (left), low contrast / above field border regions (cen-
ter, grey), CB-channel difference within high contrast regions (right, grey)

2.2.2.1 Hypotheses Generation The hypotheses generation excludes regions which are above the
field limitations or with low contrast characteristics. For each remaining block in the input image it
then calculates the difference between the inner and outer regions of the object (using CB-Channel)
by means of the estimated ball size. As a characteristic of the CB-Channel, black and white colored
pixels have a higher values than green colored pixels. That means objects with the size of the ball have

9

a higher result value in this calculation.
Local maxima from this calculation are going to be used as ball hypotheses.

Figure 10: Ball Hypotheses

2.2.2.2 Hypotheses Classification The second part of the ball detection is the classification of the
generated hypotheses with a deep convolutional neural network (CNN). The classification isn’t as
2016 separated into two stages to save computing time. We switched to Caffe as deep-learning
framework and optmized it for the Nao. We shared our changes to Caffe in a public repository
(https://github.com/tkalbitz/caffe)

Figure 11: Hypotheses

10

The C20NN is a eight layer CNN, which uses 20x20px patches. It only classifies the hypothesis with
the best score given by the first stage.
The statistics of our testset are 90.3% recall at 99.3% precision. The testset represents 30,000

ball true annotated and 60,000 false annotated images (resolution: 640x480). These images were
recorded during test matches and the robocup in China and Leipzig and represent a realistic statistical
distribution of possible game situations.

Figure 12: Classification CNN

2.2.2.3 Robot Detection As a consequence of using the Black and White Ball detection from 2016,
we had to disable the robot detection, because of the performance restrictions given by the NAO
hardware. Using this problem as motivation - a robot new detection was developed in [4]. To stay
within the performance restrictions - even with the usage of a robot detection - the detection had an
additional requirement to share as much steps as possible with the ball detection. As a result the
detection uses the same separation of detection steps: Generate Object Hypotheses, Classify these
Hypotheses and Create a visual memory.

Figure 13: Object Hypotheses

The creation of hypotheses was developed to find areas, which could possibly contain the ball, a
robot foot or a penalty spot (goal posts can be found, but are not further used in the detection).
The resulting hypotheses are now classified by one deep convolutional neural network, which can
differentiate between the three object types. This approach achieves a recall of 50% of all robots, 93%
of balls and 78% of penalty spots - with an overall precision higher than 99%.

11

Figure 14: Original and classified image

To use the detected robots, the multi-target worldmodel - which was introduced in 2016 - was
adjusted to handle all these objects the same way as before. Because of the clustering in the multi-
target worldmodel, the two feets of one robot are merged into one robot object.

2.3 Relative Multi-Target World Model

Figure 15: Multi-Target Tracker

The confidence in our orange ball detection in recent years allowed us a direct usage of ball information
without a multi-target object model. To support the black and white ball detection, which has a lower
recall, we implemented a relative multi-target world model. With an input of an object as a relative
2D position and a detection rate, this world model tracks all given objects separately. Because of that
the object characteristics are not mixed up (e.g. velocity).
The multi-target tracker compares the new input’s position with all currently stored objects. If the

tracker decides a match, the stored object will be updated with the input data. There is no merging of
old and new positions, meaning an update of an object overrides its position with the new input data.
Further, at every frame the position of every stored object will be modified depending on the robot’s
odometry data.
An additional task of the tracker is to choose an object which is going to be used as the output

data of the tracker. In case of the ball only one object can be chosen. For this decision every object

12

holds two variables which are modified (increased or decreased) in every frame depending on whether
it was detected or not. In case of not matching, a stored object is going to be held for a maximum of
4 seconds. This tracker is implemented for all kinds of objects on the field.

2.4 Infra-Red Data Transmission

Unreliability of the wifi network during most championship games prompted research into alternative
data transmission methods. One of those is using the built-in infra-red transmitters and receivers to
transmit complex data if a line-of-sight connection exists.
Data is sent in blocks of 15b with 8b/15b encoding through the LIRCD interface.
The protocol contains a 3b identifier for the Nao’s jersey number, a 3b message identifier and 2b

usable data, as well as a stop bit signalling the end of a transmission.
Transmissions of upto 3.6m are possible with acceptable error rates but a relatively low bandwidth.
This enables transmission of simple strategic information with low latencies between robots in close

proximity.

2.5 Localization

Projections centered around the estimated camera attitude are sampled and evaluated based on the
relative angles between the visible field lines. The most conforming projection is chosen and used to find
a complete set of hypotheses of the player’s position, from which the true position can be determined
by using prior data. This method increases robustness of the localization in case of permanent camera
movement (e.g. after a robot fell), fast head motions or external influences, e.g. in a fight with an
opposing robot.
To resolve the field symmetries introduced by the use of two identical yellow goals since 2012, we

analyze features in the surroundings of the field. By weighting the hypotheses of the localization
according to how well they match to these features, the symmetry can be resolved. The features of
the surroundings are updated continuously. More information can be found in [2].

2.6 Walking Engine

Until the beginning of 2010 we used closed-loop walking motions evolved through a genetic algorithm.
These motions were fast but not omni-directional (eventhough walking along a curve was possible).
This was a big disadvantage at the German Open 2010, so we decided to develop a completely different
walking engine. Since Robocup 2010, our walking engine is based on a parameterizable walking model
similar to [1] and is supported by a newly developed balancing algorithm. The big advantage of this
system is full omni-directional capability and the ability to make fast direction changes whilst still
being very stable.
The current walking engine was tuned for stability and speed manually and achieves forward speeds
of upto 370 mm/s.

2.7 NaoControl

NaoControl is a monitoring program for our robots. It provides a virtual playing field showing the
robot’s and the ball’s location. The Naos send their own and the ball’s supposed position and an
estimated localization quality to the program. With this, we can easily control whether the localization
is fine or not. Also, the robot’s rotation, field of vision and the current state of the strategy including
its destination is displayed.

13

Figure 16: Screenshots of our NaoControl application.

Next to this, it is possible to show the actual images of the Naos’ webcams. Those can be the real
pictures or the segmented ones. We are able to send commands to the robots for testing. Additionally
we are able to edit options live on the robot and in near future. We will be able to trace functions
in the software. The virtual playing field and its lines can be well customized, so adaption to new
dimensions causes no problems.
NaoControl is yet still in progress. In the near future it will be enhanced with simulation tasks. New
playing strategies will be developed and tested with the assistance of NaoControl. For this purpose it
provides simulated robot-behavior.

2.8 Motion Editor

The NaoMotionEditor is a replacement of Aldebaran’s Choregraphe. The main purpose is to capture
key frames directly from the robot, manipulate them and interpolate with a Groovy scripting engine
between them. There exist already predefined Groovy scripts which define a linear and a smooth
interpolation between two frames. These captured motions are saved in a XML file and can be later
exported to a team dependent file format. To manipulate frames exist a variety of predefined operations
like duplicate, mirror, move and show frames. The architecture of the editor is designed to add new
functionality fast, so new requirements and features can be added on demand.

14

Figure 17: Example of a goalkeeper motion.

2.9 Architecture

2.9.1 NIO Framework

Our NIO (Nao Input Output) Framework is an independent piece of software that runs on Nao robots
and extends the Aldebaran Robotics NaoQI framework.

The motivations for creating our own framework:

• Inconsistency of NaoQI’s API

• Very limited debugging capabilities of NaoQI framework

• No need for a time intensive NaoQI restart after changes to parts of the software (e.g. motions,
strategy)

• No thread safety of certain NaoQI calls

• Lots of NaoQI functionality we actually don’t need

The basic functionality of our NIO Framework is defined by a Unix Domain Socket client server pair.
We have built a simple C++ module for the NaoQI framework that exports a subset of the NaoQI calls
through the socket to the requesting process. This module is compiled as a shared library and will be
linked against our actual kernel (core executable of our framework). Our exported API calls are kept
very simple and performant, the subset is small and threadsafe. On the other hand, NIO consists of
a series of subsystems. Each subsystem is generally independent of the others and serves one single
aspect.

2.9.2 Multiple agent system to determine the optimal short term strategy

Often a robot has to face difficult decisions like: Should I turn around the ball and shoot, dribble it in
a big arc, or do a side-kick?
To facilitate situations like that and avoid big decision-trees or long if-else-chains, we introduced a
multiple agent system into our architecture in 2016.
Our robots will now get simple commands from a team strategy module, e.g. “move the ball to the

goal” or “walk to position x,y”. These commands are interpreted by many agents running in parallel.

15

Each agent first determines, whether he can fulfill the command, and then computes how long it would
take to do so. It then sends this result, including what it would like to do to fulfill the task, to an
arbitrator which chooses the agent most suitable to do the work while ignoring commands from all
other agents.
As an example, there could be 2 agents able to fulfill a command like ”move the ball to the goal”:

One that tries to dribble the ball and one that does a straight shot.
If the goal is at an angle, the agent wanting to do a straight shot would have to move around the ball,
then shoot. This would take a certain amount of time and also bring with it some risks like losing the
ball or missing the goal in the shot.
The other agent, the dribble agent, would determine how long it would take to dribble the ball into
the goal, also factoring in a possible ball loss or long duels with opposing robots.
Both estimates can now be evaluated and the movements of the best agent can be executed.
The system is also easily expandible: Say we want to add an agent that does a side-kick. It would

also just have to determine if it can fulfill the order (e.g. if the ball is near enough to the goal, so a
weak side-kick would suffice) and then determine how long it would take to do the task in a similar
way to the straight kick agent, except that it needs to be aligned at a different angle to the ball.
It can also send the data to the arbitrator and will be chosen as soon as it is the most efficient agent.
This method doesn’t require changes to already existing agents when a new agent is introduced, and

it also provides a simple way to weight all options a robot has to fulfill its task.

2.9.3 Intra-robot communication

All the modules of our new architecture, e.g. the team strategy module, the agents, and the arbitrator
need to communicate with each other in a fast, efficient, and thread-safe way.
This is implemented using 0MQ for queued communiation and a lightweight component based upon

the pthread library for queue-less last-is-best communication.

2.9.4 Wiimote control

We have developed a Wiimote remote-controlled Nao movement interface for several testing purposes.
This enables us to play against our developed Nao game strategy or to efficiently test new motions,
which for instance have been set up by our own motion editor. The Wiimote is conneted via Bluetooth
socket to a Bluetooth-enabled host machine that is within the same subnet as the Nao that will be
controlled remotely. On the Nao-side a server application listens for incoming instructions that are
sent from the host machine. With the help of our software, the host machine can even route multiple
Wiimote connections to various Nao robots.

References

[1] Sven Behnke. Online trajectory generation for omnidirectional biped walking. Proceedings 2006
IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pages 1597 – 1603,
May 2006.

[2] Samuel Eckermann. Verbesserung der Selbstlokalisierung im Roboterfußball mittels optischer
Umgebungsmerkmale. Bachelor thesis, HTWK Leipzig, 2012.

[3] Florian Mewes. Entwicklung einer dynamischen Spielstrategie auf der humanoiden Roboterplat-
tform NAO. Bachelor thesis, HTWK Leipzig, 2014.

[4] Florian Mewes. Objekterkennung und Zuordnung im Roboterfußball (SPL) - Roboter. Master
thesis, HTWK Leipzig, 2017.

16

	Team members and affiliations
	Notable work and fields of interest
	Team Strategy
	2017 Dribbling Modifications

	Vision
	HTWKVision Library
	Key Features
	Field Color Detection
	Scanline Classification
	Field Border Detection
	Line Detection
	Ellipse Fitting of Center Circle
	Goal Detection
	Near Obstacle Detection

	Black and White Ball Detection
	Hypotheses Generation
	Hypotheses Classification
	Robot Detection

	Relative Multi-Target World Model
	Infra-Red Data Transmission
	Localization
	Walking Engine
	NaoControl
	Motion Editor
	Architecture
	NIO Framework
	Multiple agent system to determine the optimal short term strategy
	Intra-robot communication
	Wiimote control

