
Team Research Report 2009

Prof. Dr. Karl-Udo Jahn,
Daniel Borkmann, Thomas Reinhardt, Rico Tilgner,

Nils Rexin, Stefan Seering

Leipzig University of Applied Sciences,
Faculty of Computer Science, Mathematics, and Natural Sciences

November 17, 2009

naohtwk@gmail.com
http://naoteam.imn.htwk-leipzig.de

1

Contents
1 System Architecture 3

1.1 Languages . 3
1.2 Source Code Management . 3
1.3 NIO Framework . 3

1.3.1 Motivation . 3
1.3.2 Architecture and Core Components 3

2 Motion 5
2.1 Evolutionary Algorithm . 5
2.2 Stand-up . 6
2.3 Motion Player . 6

3 Vision 6
3.1 Camera Settings . 6
3.2 Color Table . 7
3.3 Object Recognition . 7

3.3.1 Ball Recognition . 8
3.3.2 Anyball Challenge . 8
3.3.3 Goal Recognition . 8

4 Strategy 9

2

1 System Architecture

1.1 Languages
Our software is written in C, Java and Perl. The core system which runs on the
Nao itself is written in C. The build system for cross compiling contains useful
scripts which are written in Perl and last but not least the control UI that runs
on a client computer is written in Java. In general, the core system language
decision was based on facts like performance and simplicity, we preferred C
instead of C++. The core system has been implemented as a framework called
NIO Framework and runs as an independent process on Naos Geode platform.

1.2 Source Code Management
As our revision control system we use git. git was initially designed for the
Linux Kernel Development and is a free, performant and simple distributed
control system. Important advantages like distributed development, a strong
support for nonlinear development and the possibility of an efficient handling of
large projects convinced us to make use of git.

1.3 NIO Framework
1.3.1 Motivation

Our NIO Framework is an independent peace of software that runs on Nao
robots and extends the Aldebaran Robotics NaoQI framework. The term NIO
stands for Nao Input Output.

The motivation for creating our own framework:

• Inconsistency of NaoQIs API

• Very limited debugging capabilities of NaoQI framework

• No need for a time intensive NaoQI restart after changes to parts of the
software (e.g. motions, strategy)

• No thread safetyness of certain NaoQI calls

• Lots of NaoQI functionality we actually don’t need

• Possibility of writing plain C instead of C++ code

1.3.2 Architecture and Core Components

The basic functionality of our NIO Framework is defined by a Unix Domain
Socket client server pair. We have built a simple C++ module for the NaoQI
framework that exports a subset of the NaoQI calls through the socket to the re-
questing process. This module is compiled as a shared library and will be linked
against our actual kernel (core executable of our framework). Our exported API

3

calls are kept very simple and performant, the subset is small and threadsafe.
On the other hand, NIO consists of a series of subsystems (cf. fig. 1). Each
subsystem is almost independent of the others and serves a special purpose.
Currently there are nine subsystems within our framework, a util API, a unit
test framework and a series of build scripts.

a ldebaran mot ion m a t h

n e t

kerne l

s t ra tegy crypto debug

seg tes tut i l scripts

Figure 1: Basic NIO Framework components

A short description of our components:

aldebaran The aldebaran subsystem contains the Unix Domain Socket inter-
face with the client-side and server-side implementations of our API. The
API provides functionality spanning from simply reading the value of the
ultrasound sensor to transmitting a video4linux frame.

motion Our motion subsystem mainly consists of a motion player, which reads
motion frames from a motion file and sets the servo angles to the given
value. There is also a temperature monitoring system within our motion
player that detects critical thresholds and acts accordingly.

math We’ve implemented a highly performant math library with low-level as
well as high-level math functions and future support of x86/Geode ma-
chine instruction extensions.

kernel The kernel itself represents the core executable of our framework. It
bootstraps all of our functionality and makes use of all the other subsys-
tems.

net The networking subsystem allows encrypted robot-to-robot communication
with multicast and unicast protocols.

4

strategy Our strategy subsystem contains, as the name already tells, our game
strategy. Furthermore, it is possible to swap several strategies during
runtime.

crypto The crypto subsystem contains several cryptographic functions for en-
crypted robot-to-robot communication as well as pseudo random number
generators and others.

debug The debug subsystem represents the bridge from our robot to the Java
client with a userfriendly graphical interface. It is used for camera cali-
bration, visual debugging and remote controlling the robot.

util Some util routines that didn’t fit into a specific subsystem, for instance
queues, linked lists, hash tables, trees and more.

seg The segmentation subsystem contains highly performant image segmenta-
tion algorithms for object recognition during gameplay.

test We have built a unit test framework for NIO that contains serveral test
routines for our developed functionality.

scripts Some Perl routines for code checking and creating code metrics during
the build process.

2 Motion

2.1 Evolutionary Algorithm
Most of the motions used in the tournament were closed loop motions trained
using a specialized evolutionary algorithm. To achieve an acceptable speed of
convergence while training on actual robots, the EA was first optimized using
the Webots simulation environment. Optimizations included the utilization of
symmetry and developing a mutation kernel based on B-Splines and multiple-
joint mutations. Combined with a fitness function trimmed for fast as well as
stable movement, we ran the EA on one of our Naos. To our surprise, the
convergence characteristics actually improved when using the real robot instead
of a simulation. After an evaluation of a total of just 4000 individuums of
straight walking, the robot achieved a maximum speed of 32 cm/s (1.15 km/h).
Other movement types like walking to the side and turning were also trained
using the same approach.

To allow for bent walking, we modified the straight walking mode with op-
timized sinusoidal functions at the hip joints. This allowed for a turning circle
adjustable down to a diameter of 1.6 meters on nearly full speed (22 °/s). The
adjustments can be set at any time to any extent and therefore also allow for
slalom-type walking.

Further, the straight walk was stabilized by controlling the shoulder pitch
joint angles with a modified software PD controller. This was especially neces-
sary when walking over field lines, as the robot would get stuck and fall over

5

because of the low vertical actuation of its feet resulting from the EA. The
input into the PD controller was comprised of the current torso angles and a
pre-recorded base-line of an optimal situation.

2.2 Stand-up
Both stand-up motions (front and back) were programmed by hand. Times of
5.2s for standing up from the back and 4.5s for standing up from the front were
achieved, which is faster than the motions supplied with the robot. Falling down
is detected using the torso angle and results in a reduced stiffness of all joints
to lessen the severity of the hit.

2.3 Motion Player
A motion player is included into NIO. It can load and reload motions stored
in a human-readable format on-the-fly and will play motions continuously until
a function to stop or switch the motion is called. It will automatically utilize
acceleration, deceleration and morphing between motions if they are supplied by
the motion files. Further, it is possible to let the motion player handle stand-
up routines when it detects a falling robot as well as a penalized mode that
temporarily suspends all motions.

3 Vision
There are two separate cameras available in the robot. However, as switch-
ing between those cameras took too long with the version of NaoQI used for
Robocup 2009, only the chin camera was used. This brought another advantage
in that only one color calibration had to be done.

3.1 Camera Settings
In the ligthing conditions prevalent at Robocup2009, we mainly used the fol-
lowing camera parameters:

6

parameter value
resolution 640x480
framerate 30fps
format yuv 4:2:2
gain 100

red chroma 80
blue chroma 100
contrast 60
autogain 0

AutoWhiteBalance 0
AutoExposure 0
ExposureTime 80
Brightness 128
Saturation 160

3.2 Color Table
To classify objects like the ball, goals and floor, we use a 64x64x64 downsampled
lookup table in YUV-space. It holds object classifications for every color, as well
as a certanity of the correctness of the classifications.

We developed an interactive Java program to generate a color table within
approx. 5 minutes by using its integrated color picker tools.

Figure 2: Extract of the color table and probability density function

3.3 Object Recognition
Two separate algorithms are used to recognize either the ball or goals and can
be called from within the states of the strategy. The separation of both results
in a higher framerate.

7

3.3.1 Ball Recognition

For segmenting the ball, a classification according to the color table is done at
points determined by a raster. This raster is determined by the torso angle of
the robot. Only points below the horizon are used with a distance inbetween
inversely proportional to the relative distance to the robot. Regions with high
probabilities of beloning to class “ball” are examined further by utilizing a circle-
shaped filter. This eliminates image noise and misclassifications (e.g., orange
bags).

Abbildung 3: Rasterization of the image according to est. distance

3.3.2 Anyball Challenge

The anyball challenge was set to identify multiple balls of different color and size
and kick them, preferably into a goal. The main problem was the identification
of balls of different color. The idea used by our team was to classify everything
which is not the floor or field lines as ball. A modified circle-shaped filter was
used to exclude objects that were not surrounded by green floor or white lines.

3.3.3 Goal Recognition

Typically, a problem of goal recognition are people wearing blue jeans that are
recognized as blue goal posts by some segmentation methods. To solve this
problem, we used a simple model of the goal frame and calculated, using the
RANSAC algorithm, the correct position and orientation. Similar to the ball
recognition, the image needs to be scanned only partially. For this purpose,
lines orthogonal to the horzion are evaluated.

8

4 Strategy
Our strategy is based on a finite state machine (FSM), cycling between 6 states:
find ball, turn to ball, walk to ball, adjust on ball, turn around ball and shoot.
Each of these states is comprised of a series of motions and segmentation set-
tings. While, e.g., in “walk to ball”, the segmentation will only recognize a ball
whilst ignoring the goals or other objects, in “turn around ball”, only the goals
are segmented without caring about the actual position of the ball (it is as-
sumed to be beneath it’s feet and checked after a goal is found). This increases
the execution speed of both states considerably which in turn results in faster
reaction times and less head movement.

Figure 4: Finite State Machine

9

