
HTWK Leipzig
Fakultät Informatik und Medien

Von der Simulation aufs Spielfeld:
Reinforcement Learning für dynamische
Schussbewegungen im Roboterfußball

Bachelorarbeit
von Felix Loos

Studiengang: Informatik B.Sc.
Erstprüfer: Prof. Dr. rer. nat. Jens Wagner
Zweitprüfer: M. Sc. Tobias Jagla
Abgabedatum: 22. September 2025
Ort: Leipzig

Kurzfassung

Diese Arbeit befasst sich mit der Entwicklung einer Schussbewegung für einen
humanoiden Roboter mithilfe von Reinforcement Learning (RL). Im Gegensatz
zu klassischen Ansätzen mit fest vorgegebenen Motorsequenzen erlaubt RL ei-
ne dynamische Anpassung an veränderliche Umgebungen und fördert eine stabile
Ganzkörperkontrolle. Zu diesem Zweck wurde eine physikbasierte Simulation in
NVIDIA Isaac Gym auf Basis der Booster Gym für den humanoiden T1-Roboter
aufgebaut. Innerhalb dieser Umgebung wurde ein Belohnungsdesign entwickelt, das
dichte Hilfsbelohnungen zur Steuerung des Lernprozesses mit spärlichen Zielbeloh-
nungen kombiniert, um ein gezieltes Schussverhalten zu erlernen. Um den Reali-
ty Gap zu überbrücken, kamen Domain Randomization und gezieltes Finetuning
zum Einsatz. Die erlernte Strategie konnte erfolgreich ohne zusätzliches Training
in der realen Welt (Zero-Shot-Transfer) auf den Roboter übertragen werden. Die
Ergebnisse zeigen, dass der Agent Schussbewegungen sowohl in der Simulation als
auch auf der echten Hardware ausführen kann. Damit wird deutlich, dass RL in
Kombination mit einem geeigneten Belohnungsdesign und Sim-to-Real-Methoden
ein vielversprechender Ansatz für komplexe, dynamische Bewegungen humanoi-
der Roboter ist und eine Grundlage für weitere Fähigkeiten wie Dribbeln oder
Torwartverhalten bietet.

I

Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis

Kurzfassung I

1 Einleitung 1
1.0.1 Zielsetzung . 1

2 Grundlagen 3
2.1 Simulation . 3

2.1.1 Anforderungen an Simulationen 3
2.1.2 Funktionsweise von Simulationen 4

2.2 Reinforcement Learning . 4
2.2.1 Reinforcement Learning für Verhalten von Robotern 6
2.2.2 Reinforcement Learning Algorithmen 8
2.2.3 Übertragung in die Realität 9

2.3 Booster T1 Roboter . 10
2.3.1 Aufbau des Roboters . 11

3 Methodik 13
3.1 Simulation . 13

3.1.1 Aufbau der Simulation . 13
3.1.2 Umgebung und Robotermodell 15
3.1.3 Domain Randomization . 16

3.2 Training . 16
3.2.1 Ablauf des Trainigs . 16
3.2.2 Implementierung . 17
3.2.3 Trainingsüberwachung . 18

3.3 Lernsignale . 18
3.3.1 Belohungsdesign . 19
3.3.2 Evaluationsstrategien . 20
3.3.3 Abbruchbedingungen . 24

3.4 Sim-to-Real . 25
3.4.1 Set-up auf dem Roboter . 25
3.4.2 Sim-to-Real-Transfer . 25

4 Diskussion 27

5 Fazit 29

6 Ausblick 30

II

Inhaltsverzeichnis Inhaltsverzeichnis

A Zusatzmaterial 36

Eidesstattliche Erklärung 51

III

Abbildungsverzeichnis Abbildungsverzeichnis

Abbildungsverzeichnis

2.1 Booster T1 in der Laborumgebung. 11
2.2 Gelenk- und Segmentbezeichnungen des Booster T1 11
3.1 Isaac Gym: Komponenten und Datenfluss 14
3.2 Vereinfachte Kollisionsformen im T1-Modell 15
3.3 Schuss-Task: Simulationsaufbau . 15
3.4 Beispielhafte Skalierungen von Belohnungen im Trainingsverlauf . . 22
3.5 Verlauf von ausgewählten Belohnungen während eines Schusses . . . 24
4.1 Schuss-Sequenzen: real vs. Simulation 27

IV

Tabellenverzeichnis Tabellenverzeichnis

Tabellenverzeichnis

4.1 Ergebnisse der Simulation des Schuss-Trainings 28
A.1 Beobachtungen des Actors . 36
A.2 Privilegierte Beobachtungen (nur Critic). 37
A.3 Domain Randomization: Verteilungen/Intervalle, Anwendungsmo-

mente und Erläuterungen . 38
A.4 Belohnungsterme mit Skalierung der Finetuningiterationen 41
A.6 Optimizer- und Trainingsparameter 46
A.7 Simulationsparameter für den Schuss-Task in Isaac Gym. 47
A.5 Abbruchbedingungen . 49
A.8 Schichtweiser Aufbau der Actor–Critic-Architektur 50

V

1 EINLEITUNG

1 Einleitung

Fußball stellt ein besonders schwieriges Problem für Roboter dar [1]. In einer sich
kontinuierlich ändernden Umgebung müssen präzise Ganzkörperbewegungen aus-
geführt werden. Eine anspruchsvolle und für das Spiel entscheidende Bewegung
ist ein gezielter Schuss, der neben Präzision auch Gleichgewicht und Ballgefühl
erfordert.
Im klassischen Ansatz werden feste Bewegungsabläufe einprogrammiert, bei de-

nen die Motoren fixe Positionen in festgelegten zeitlichen Intervallen erreichen [2,
3]. Diese Sequenzen können allerdings nicht dynamisch auf Veränderungen in der
Umgebung reagieren, was bedeutet, dass der Roboter während des Schusses leicht
durch Hindernisse oder andere Roboter umgestoßen werden kann.
Um diese Limitationen zu umgehen, gibt es verschiedene Ansätze, die Stabi-

lität und Exaktheit der programmierten Bewegung miteinander zu verhandeln [4].
Allerdings kommt auch dieser Ansatz an seine Grenzen, wenn mehr Dynamik ge-
fordert ist. Jeder neue Aspekt, wie Reagieren auf unterschiedliche Ballpositionen,
Ausfallschritte bei besonders starken Stößen oder Anpassen des Ziels, benötigt
neue, unter Umständen aufwendige Implementierungen.
Maschinelle Lernverfahren sollen Abhilfe schaffen, indem sie komplexes dyna-

misches Verhalten in einer simulierten Umgebung weitgehend frei explorativ er-
mitteln, anstatt extern vorgegeben zu sein. Pionierprojekte für Spielfertigkeiten
im Fußball, wie Dribbeln [5], Torwartverhalten [6] oder Schießen [7], haben viel-
versprechende erste Ergebnisse geliefert. Ambitioniertere Forschungsprojekte, die
statt einzelner Bewegungen ganze Verhaltensmuster und Strategien lernen, wurden
bereits erfolgreich in Simulationen [8] und mit echten Robotern [9] erprobt. Dabei
sind Ansätze für ein vollständiges Spielverhalten im Vergleich zu spezialisierten
Lernzielen sehr rechenintensiv und aufwendig in der Planung und Durchführung.
Angesichts dessen betrachtet diese Arbeit nur das Erlernen einer einzelnen Bewe-
gung, was ebenfalls perspektivisch ermöglicht, den Lernerfolg mit konkurrierenden
oder zukünftigen Ansätzen leichter zu vergleichen.
Wenn sich die vielversprechenden Ansätze auch in Wettkampfumgebungen, wie

dem RoboCup, beweisen sollten, werden wir in Zukunft dynamischeren, menschen-
ähnlicheren und spannenderen Roboterfußball sehen können.

1.0.1 Zielsetzung

Ziel dieser Arbeit ist es, ein Schussverhalten für einen T1 Roboter von Booster
Robotics [10] zu entwickeln. Das Verhalten soll mit dem maschinellen Lernverfah-
ren, Reinforcement Learning, in einer Simulation trainiert und anschließend auf
den echten Roboter übertragen werden. Es soll gezeigt werden, wie die Simulation
und der Trainingsprozess aufgebaut sein müssen, um eine direkte Übertragung des

1

1 EINLEITUNG

gelernten Verhaltens aus der Simulation auf den echten Roboter zu gewährleisten.
Ein nachgelagertes Trainieren oder Adjustieren des Verhaltens mit echten Daten
wäre somit nicht erforderlich. Im Mittelpunkt stehen das Belohnungsdesign, das
das Lernziel festlegt und Qualität, wie Übertragbarkeit des Verhaltens, maßgeblich
bestimmt, sowie die Evaluationsstrategien, mit denen dieses Design schrittweise er-
arbeitet wurde.

2

2 GRUNDLAGEN

2 Grundlagen

Um die Umsetzung dieser Arbeit nachvollziehbar zu machen, werden in diesem Ka-
pitel die notwendigen theoretischen und technischen Grundlagen erläutert. Zunächst
wird auf die Rolle von Simulationsumgebungen eingegangen, die eine sichere und
effiziente Möglichkeit bieten, komplexe Bewegungen zu trainieren und zu testen.
Anschließend wird das Reinforcement Learning vorgestellt, das als zentrales Lern-
verfahren dient, um das gewünschte Verhalten des Roboters zu erlernen. Dabei
werden sowohl die grundlegenden Prinzipien als auch spezifische Algorithmen be-
schrieben, die sich für kontinuierliche Ganzkörperbewegungen in der Robotik eig-
nen. Darüber hinaus wird die Herausforderung des sogenannten Reality Gaps the-
matisiert, der beim Transfer von Strategien aus der Simulation in die reale Welt
auftritt. Abschließend wird der verwendete Roboter, der Booster T1, vorgestellt.
Seine Eigenschaften und technischen Spezifikationen bilden die Grundlage für das
Training, sowie die spätere Evaluierung auf der realen Hardware. Damit legt dieses
Kapitel das Fundament für die methodische Umsetzung, die im folgenden Kapitel
beschrieben wird.

2.1 Simulation

Im Gegensatz zum klassischen Ansatz setzen moderne Verfahren des maschinellen
Lernens auf die Arbeit in Simulationsumgebungen [11]. Dieses virtuelle Training
erlaubt die Erzeugung vielfältiger, dynamischer Kontexte, die massenhafte Par-
allelisierung verschiedener Versuchsinstanzen und das Reduzieren von Risiken für
Mensch und Maschine. Bei entsprechender Rechenleistung bieten diese Ansätze
ein erhebliches Plus an Effizienz, Rigorosität und Sicherheit und sind dabei be-
merkenswert günstig [12].

2.1.1 Anforderungen an Simulationen

Zentral ist eine realistische Physik-Engine. Diese muss Bewegungen von Körpern
unter Kräften, wie Gravitation und Drehmomenten, auf Gelenken möglichst genau
simulieren können. Speziell für das Simulieren der Robotermodelle ist eine genaue
Rigid-Body-Dynamik nötig. Diese berechnet das Verhalten von Objekten unter
Krafteinwirkung, die über Gelenken miteinander verbunden sind. Zusätzlich sollten
Kollisionen und Reibungen von verschiedenen Objekten untereinander möglichst
realistisch berechnet werden [13]. Ebenso wichtig ist die Möglichkeit, mit der Si-
mulation detaillierte, virtuelle Umgebungen zu erzeugen, welche realistische Ober-
flächeneigenschaften und Lichtbedingungen beinhalten. Um vordefinierte Roboter-
modelle in die Umgebungen zu laden, ist es wichtig, dass gängige Modellformate

3

2.2 Reinforcement Learning 2 GRUNDLAGEN

wie Universal Scene Description (USD) [14] oder Unified Robot Description For-
mat (URDF) [15] unterstützt werden. Des Weiteren müssen Daten von Kameras,
Kraftsensoren und Inertial Measurement Units (IMU) 1 realistisch gerendert bzw.
generiert werden können. Zusammenfassend lässt sich sagen, dass eine passende
Simulation für das Training von Bewegungen für Roboter einen digitalen Zwilling
sowohl der physischen Plattform als auch der entsprechenden Umgebung schaffen
muss. Dabei gilt: Eine authentischere Simulation erzielt realistischere Ergebnisse
[16].

2.1.2 Funktionsweise von Simulationen

Zu Beginn einer Simulation wird eine virtuelle Umgebung erzeugt, in die die Ro-
botermodelle geladen werden. Anschließend berechnet die Physik-Engine in dis-
kreten Zeitschritten die zukünftigen Zustände. Dafür werden die Positionen und
Geschwindigkeiten aller Objekte mit internen Kräften wie Motordrehmomenten
und mit externen Kräften wie Schwerkraft oder Kontaktkräften verrechnet. Nach
jedem Berechnungsschritt werden Sensordaten aus den Zuständen generiert und
genutzt, um eine Aktion zu berechnen. Bei diesen Aktionen handelt es sich um Mo-
torkräfte, die beim nächsten Berechnungsschritt umgesetzt werden. Je realistischer
jeder der einzelnen Schritte ist, desto realistischer ist auch die gesamte Simulation
[17, 18].

2.2 Reinforcement Learning

Reinforcement Learning wird in der Literatur als eigenständiges Lernparadigma
zwischen Supervised und Unsupervised Learning beschrieben. Es basiert nicht auf
direkter Beschriftung von Daten, sondern auf verzögertem Feedback, das über
eine Belohnungsfunktion vermittelt wird [19]. Dabei wird durch Ausprobieren und
automatisiertes Bewerten gelernt.
Im Reinforcement Learning interagiert ein Agent mit einer Umgebung. Der Agent

wählt Aktionen, die den Zustand der Umgebung verändern, und erhält dafür Be-
lohnungen. Ziel ist es, eine Strategie zu lernen, die den erwarteten langfristigen
Gesamtertrag maximiert.
Der Zustandsraum umfasst alle möglichen Zustände, die über Aktionen erreich-

bar sind. Ein Aktionsraum umfasst alle möglichen Aktionen, die dem Agenten zur
Verfügung stehen. Die BelohnungsfunktionR weist Zuständen (oder Zustands–Aktions-
Paaren) numerische Belohnungen zu und spiegelt das Lernziel wider. Darauf auf-

1Eine IMU (Inertial Measurement Unit) ist ein Inertialsensorpaket aus Beschleunigungssen-
sor(en) und Gyroskop(en), oft ergänzt um ein Magnetometer. Sie misst lineare Beschleunigun-
gen a und Winkelgeschwindigkeiten ω im Sensorkoordinatensystem und wird zur Zustands-
/Pose-Schätzung (z. B. mit Filter- oder Optimierungsverfahren) verwendet.

4

2 GRUNDLAGEN 2.2 Reinforcement Learning

bauend beschreibt die Wertfunktion V π die erwartete Summe zukünftiger Beloh-
nungen unter einer gegebenen Strategie (Policy) π:

Gt =
∞∑
k=0

γkRt+k+1, mit 0 ≤ γ < 1,

wobei Gt die discounted Return-Summe, Rt+k+1 die Belohnungen und γ der Dis-
countfaktor ist, der bestimmt, wie stark zukünftige Belohnungen gegenüber un-
mittelbaren Belohnungen abgewertet werden. Die discounted Belohnungen sorgen
dafür, dass auch weniger gute Aktionen in Kauf genommen werden, um später eine
größere Belohnung zu erhalten.
Für das Beispiel Schießen ist eine mögliche Belohnungsfunktion die Geschwin-

digkeit des Fußes zum Ball. Je höher die Geschwindigkeit in Richtung Ball, umso
härter fällt der Schuss aus. Andersherum, wenn der Fuß sich vom Ball weg bewegt,
wird die Belohnung negativ und entspricht einer Bestrafung. Im Gegensatz dazu
könnte eine Wertefunktion so erstellt werden, dass eine Geschwindigkeit weg vom
Ball ebenfalls positiv bewertet wird, wenn das Ausholen des Beines später eine
deutlich größere Belohnung ermöglicht.
Dabei werden zwei wesentliche Arten von Belohnungen unterschieden: dichte

Hilfsbelohnungen, die jeden Zustand kontinuierlich bewerten und direktes Feed-
back geben, sowie spärliche Hilfsbelohnungen, die das Auftreten eines gewissen
Zustandes belohnen [19]. Ein Beispiel für eine dichte Hilfsbelohnung ist die oben
genannte Geschwindigkeit des Fußes in Richtung Ball, während ein Beispiel für
eine spärliche Zielbelohnung das Berühren des Balls ist.
Die Strategie π des Agenten definiert, mit welcher Wahrscheinlichkeit er in einem

Zustand s eine Aktion a auswählt. Ziel des Lernens ist es, diese Strategie so zu
verbessern, dass die langfristig erwartete Belohnung maximiert wird.
Mit der Belohnungsfunktion und gegebenenfalls der Wertefunktion wird aus dem

Zustandsraum eine Landschaft. Ergänzend kann auch der Aktionsraum der Land-
schaft hinzugefügt werden. Anschließend wird die Landschaft durch Ausprobieren
verschiedener Aktionen in verschiedenen Zuständen erkundet.
Durch Exploration werden stichpunktartig einzelne Bereiche der Landschaft

ausprobiert, ohne dass lokale Optima gesucht werden. Im Gegensatz dazu kann
durch das Ausnutzen bekanntermaßen guter Aktionen (Exploitation) ein Bereich
der Landschaft näher untersucht und lokale Optima gefunden werden.
Dieses Spannungsfeld wird als Exploration-Exploitation-Dilemma bezeichnet. Ei-

nerseits muss der Agent ausreichend explorieren, um neue und potenziell bessere
Strategien zu entdecken. Andererseits muss er exploiten, also bereits bekannte gu-
te Aktionen nutzen, um kurzfristig Belohnungen zu maximieren. Der Erfolg eines
RL-Verfahrens hängt entscheidend davon ab, ein Gleichgewicht zwischen diesen
beiden Anforderungen zu finden [20].

5

2.2 Reinforcement Learning 2 GRUNDLAGEN

Die Umgebung ist ein Interface, in dem Aktionen Zustände zugeordnet werden,
die von Belohnungsfunktionen bewertet werden. Über dieses Interface interagiert
der Agent mit dem Resultat der Aktionen.
Die Anzahl der kontinuierlichen Interaktionen muss hoch genug gesetzt werden,

damit die kumulierten Belohnungen konvergieren. Sobald die Belohnungen kon-
vergieren, kann das Verfahren beendet werden. Allerdings lässt sich in der Regel
nicht sagen, ob das gefundene Ergebnis einem globalen oder lediglich einem lokalen
Optimum entspricht.
Ein Durchlauf des Verfahrens ist ein Trainingsdurchlauf. Im Folgenden kann das

Resultat evaluiert werden und in einem weiteren Durchlauf können die Belohnun-
gen angepasst werden (siehe Abschnitt 3.3.2).

2.2.1 Reinforcement Learning für Verhalten von Robotern

Das Lernen von Verhalten für Roboter lässt sich formal durch ein Markov Decision
Process (MDP) beschreiben [21]. Ein MDP wird üblicherweise als Tupel

M = (S,A, P, R, γ, ρ0)

definiert. Die einzelnen Komponenten haben dabei folgende Bedeutung:

• S ist der Zustandsraum. Im Robotik-Kontext umfasst dieser alle möglichen
Zustände, die durch die Sensorik beschrieben werden können, wie beispiels-
weise Gelenkwinkel, Gelenkgeschwindigkeiten, Kräfte oder externe Messun-
gen durch Kameras oder IMUs. Die rohen Sensordaten werden dabei meist
vorverarbeitet, etwa durch Normalisierung oder Filterung, um stabile Einga-
ben für das Lernverfahren zu gewährleisten [22]. Ein Beispiel für Normalisie-
rung ist die Skalierung von Winkel- oder Geschwindigkeitswerten auf ein In-
tervall wie [−1, 1], sodass alle Beobachtungen vergleichbare Größenordnungen
aufweisen.

• A ist der Aktionsraum. Er umfasst alle möglichen Steuerbefehle an die Moto-
ren des Roboters, wie zum Beispiel Sollpositionen, Geschwindigkeiten, Dreh-
momente oder auch erweiterte Parameter wie Steifigkeiten. Dabei sollten
die physischen Limits der Motoren (zum Beispiel maximale Winkel oder
Drehmomente) berücksichtigt werden, um den Aktionsraum sinnvoll zu be-
schränken und realistisch ausführbare Aktionen zu gewährleisten.

• P (s′ | s, a) ist die Übergangsfunktion. Sie beschreibt die Wahrscheinlichkeit,
bei Ausführung einer Aktion a ∈ A aus einem Zustand s ∈ S in einen
Folgezustand s′ ∈ S überzugehen. Diese Dynamik ist in der Robotik meist
durch die physikalischen Gesetze der Mechanik und die Dynamik der Motoren
bestimmt.

6

2 GRUNDLAGEN 2.2 Reinforcement Learning

• R(s, a, s′) ist die Belohnungsfunktion. Sie ordnet jedem Übergang von ei-
nem Zustand s über eine Aktion a in einen Folgezustand s′ eine Belohnung
r ∈ R zu. Die Belohnungsfunktion spiegelt das Lernziel wider, etwa die Fort-
bewegung des Roboters, das Greifen eines Objekts oder das Vermeiden von
Hindernissen.

• γ ∈ [0, 1) ist der Discountfaktor. Er bestimmt, wie stark zukünftige Beloh-
nungen im Vergleich zu unmittelbaren Belohnungen gewichtet werden. Ein
kleiner γ führt zu einem kurzfristig orientierten Verhalten, ein hoher γ zu
einem langfristigen Verhalten.

• ρ0 beschreibt die Anfangszustandsverteilung, aus der zu Beginn einer Episode
der Startzustand s0 gezogen wird.

Der Lernprozess verläuft typischerweise in diskreten Zeitschritten t = 0, 1, 2,
In jedem Schritt befindet sich der Agent (der Roboter) in einem Zustand st ∈
S, wählt gemäß seiner Strategie (Policy) π(a | s) eine Aktion at ∈ A, wechselt
mit Wahrscheinlichkeit P (st+1 | st, at) in einen Folgezustand st+1 und erhält eine
Belohnung

rt+1 = R(st, at, st+1).

Eine solche Abfolge (st, at, rt+1, st+1) wird als Transition bezeichnet und beschreibt
einen einzelnen Zeitschritt im Lernprozess.
Ziel ist es, eine Strategie π zu erlernen, welche die erwartete kumulierte und

discounted Belohnung maximiert:

J(π) = Eπ,P,ρ0

[
∞∑
t=0

γtR(st, at, st+1)

]
.

Dabei beschreibt J(π) die zu optimierende Zielfunktion, also den erwarteten
Gesamtertrag einer Strategie π. Die Erwartung Eπ,P,ρ0 berücksichtigt dabei die
Wahrscheinlichkeiten der Strategie π, die Übergangsdynamik P der Umgebung
und die Anfangszustandsverteilung ρ0. Die Summe über alle Zeitschritte t auf-
summiert die zukünftigen Belohnungen R(st, at, st+1), die mit dem Diskontfaktor
γ abgewertet werden, sodass unmittelbare Belohnungen stärker gewichtet sind als
weit entfernte. Das Ziel des Lernens ist es also, die Strategie π so zu verbessern,
dass J(π) möglichst groß wird.
Dieses formale Gerüst erlaubt es, ein Robotik-Szenario präzise zu beschreiben

und verschiedene Algorithmen für das Lernen von Verhalten systematisch anzu-
wenden und zu vergleichen [23].

7

2.2 Reinforcement Learning 2 GRUNDLAGEN

2.2.2 Reinforcement Learning Algorithmen

Ein weitverbreiteter Ansatz ist Q-Learning. Gelernt wird eine Wertefunktion (Q-
Funktion) für Zustands-Aktions-Paare, welche klassischerweise tabellarisch ange-
legt wird [24].
Die Aktualisierung der Q-Funktion erfolgt iterativ nach der klassischen Q-Learning-

Regel:

Q(st, at)← Q(st, at) + α
(
rt+1 + γmax

a′
Q(st+1, a

′)−Q(st, at)
)
.

Hierbei ist Q(st, at) der bisherige Wert des Zustands-Aktions-Paares, α ∈ (0, 1]
die Lernrate, rt+1 die erhaltene Belohnung nach Ausführung der Aktion at im
Zustand st, und γ der Discountfaktor. Der Term maxa′ Q(st+1, a

′) repräsentiert
die Schätzung des besten zukünftigen Wertes im Folgezustand.
Das bedeutet: Wenn eine Aktion zu einer hohen Belohnung führt und zudem ein

vielversprechender Folgezustand erreicht wird, wird der Q-Wert für (st, at) erhöht.
Führt die Aktion dagegen zu einer geringen oder negativen Belohnung, wird der Q-
Wert entsprechend abgesenkt. Auf diese Weise lernt der Agent durch wiederholte
Interaktion mit der Umgebung, welche Aktionen langfristig vorteilhaft sind.
Der große Vorteil der Wertefunktion ist eine stabile Bewertung der Aktionen und

Zustände. Demzufolge können Strategien statisch von der Q-Funktion abgeleitet
werden. Die Aktionen werden so gewählt, dass der Wert der Q-Funktion maximiert
wird. Dieses Verfahren kommt in hochdimensionalen Aktionsräumen allerdings
an Grenzen, da alle Q-Werte für alle Zustands-Aktionspaare gespeichert werden
müssen und bei jedem Optimierungsschritt in maxa′ Q(st+1, a

′) durchsucht werden.
Eine Erweiterung des Ansatzes - Deep Q-Learning - ersetzt die tabellarische

Q-Funktion durch ein neuronales Netz. Dabei wird versucht, die Q-Funktion zu
approximieren. Folglich skaliert der Ansatz besser in hohen Dimensionen, da nur
ein neuronales Netz ausgeführt werden muss.
Die Q-Funktion mit neuronalen Netzen wird ebenso wie ihr klassisches Pendant

diskret ausgewertet und in Aktionen überführt. Der Aspekt macht dabei diesen
Ansatz nicht direkt brauchbar für die Robotik, weil die Motoren auf Anweisungen
in einem kontinuierlichen Format angewiesen sind. Um kontinuierliche Aktionen
zu ermöglichen, kann die Auswertung der Q-Funktion ebenfalls durch ein neu-
ronales Netz erfolgen. Diese Ansätze sind Q-basierte Actor-Critic-Varianten wie
Deep Deterministic Policy Gradient (DDPG) [25] und Soft Actor–Critic (SAC)
[26, 27], Diese Verfahren brauchen allerdings viele Zeitschritte und konvergieren
langsam für komplexe Probleme. Das liegt vor allem daran, dass in hochdimen-
sionalen Zustands- und Aktionsräumen sehr viele Transitionen benötigt werden,
um ausreichend Erfahrung zu sammeln. Zusätzlich ist die Exploration in kontinu-
ierlichen Aktionsräumen aufwendig, da zufällige Aktionen oft nicht sinnvoll sind

8

2 GRUNDLAGEN 2.2 Reinforcement Learning

und dadurch viele Belohnungen uninformativ bleiben. Weiterhin können kleine
Änderungen an Hyperparametern oder an der Umgebung das Lernen instabil ma-
chen, was die Konvergenz zusätzlich verlangsamt [28].
Ein weiterer häufig verwendeter Ansatz ist Policy Gradient, bei dem die Stra-

tegiefunktion direkt gelernt wird. Umgesetzt wird sie dabei als neuronales Netz
und mit Gradient Ascent optimiert. Das neuronale Netz kann dabei kontinuierliche
Werte zurückgeben und bei diskreten Werten deren Wahrscheinlichkeitsverteilung.
Bei Q-Learning (ohne neuronalen Netzen als Strategiefunktion) wird eine feste

Strategiefunktion aus der Wertefunktion abgeleitet, somit konvergiert sie statisch.
Hingegen hat Policy Gradient eine flexible Strategiefunktion unabhängig von ei-
ner Wertefunktion, die im Laufe des Trainings flexibel konvergieren kann [28].
Eine populäre Implementierung dieses Ansatzes ist Proximal Policy Optimization
(PPO), welche Mechanismen einführt, die stabile Updates der Strategiefunktion
beim Lernen begünstigen [29].
Moderne Implementierungen dieser beiden Ansätze wie SAC oder PPO nutzen

die Actor-Critic-Architektur. Dabei gibt es eine Wertefunktion, den Critic, und
eine Strategiefunktion, den Actor, die beide in Form eines neuronalen Netzes um-
gesetzt werden. Der Critic soll im Laufe des Trainings das Verhalten des Actors
bewerten. Beim Lernen wird der Actor so optimiert, dass Verhalten auftritt, wel-
ches der Critic positiv bewertet. Der Critic lernt anhand von Belohnungen, das
Verhalten des Actors und den Zustand der Umgebung zu bewerten [28]. Dabei
kann er zusätzliche Informationen über den Zustand der Umgebung bekommen,
die der Actor nicht erhält. Dies kann zu stabileren Bewertungen führen [30]. Die
Actor-Critic-Architektur vereint die Vorteile von Wertefunktionen (stabile Beur-
teilungen der Aktionen) und die Vorteile der Strategiefunktion (flexible Strate-
giekonvergenz). Nachteilig ist jedoch, dass zwei neuronale Netze optimiert werden
müssen. Das bedeutet höhere Komplexität und mehr Parameter, die angepasst
werden müssen [26].
In dieser Arbeit wird mit der PPO-Implementierung gearbeitet, welche erprobt

im Bereich der Robotik ist [31, 32, 33]. Trainiert wird die Strategie in der Nvidia
Issac Gym Simulation und soll anschließend auf dem echten Roboter laufen. Hier
ergibt sich jedoch das Problem, dass der Transfer nicht trivial möglich ist; zunächst
muss der Simulation Gap überbrückt werden.

2.2.3 Übertragung in die Realität

Die größte Herausforderung ist der Reality Gap. Dieser beschreibt die Unterschiede
zwischen Simulation und der echten Umgebung. Die Simulation kann zum Beispiel
Aspekte wie Massen, Reibungen, Kontakte und Latenzen nicht genau abbilden.
Dies sorgt dafür, dass Strategien, die in der Simulation funktionieren, sich nicht
ohne Weiteres in die reale Welt übertragen lassen. Zusätzlich können Strategien in

9

2.3 Booster T1 Roboter 2 GRUNDLAGEN

der Simulation entwickelt werden, die spezifische Fehler der Simulation ausnutzen
[34]. Ein Beispiel dasfür ist, wenn der Agent lernt, durch einen Boden ohne korrekt
modellierte Kollision zu

”
gleiten“ oder sich durch unrealistisch niedrige Reibung

schneller fortzubewegen. Solche Strategien funktionieren zwar in der Simulation,
sind aber in der Realität physikalisch unmöglich und führen dort zu Fehlverhalten.
Eine spezielle Art des Reality Gaps stellt der Perception Gap dar. Dieser be-

schreibt die nicht genaue Abbildung von Sensorwerten wie Kamerabildern oder
IMU-Werten. Ein gängiges Beispiel sind IMU-Werte, die in der Simulation rausch-
frei sind. Eine Strategie könnte davon ausgehen, dass diese Werte auch in der
realen Umgebung immer ideal sind. Das kann zu Fehlverhalten führen, wenn die
echte IMU zum Beispiel durch Magnetfelder beeinflusst wird [35].
Die naheliegendste Lösung der oben genannten Probleme ist, die Simulation

genauer zu machen. Dafür werden der Roboter und seine Umgebung möglichst
genau vermessen und anschließend in der Simulation modelliert. Dieser Ansatz
wird Systemidentifikation genannt [34, 36].
Allerdings ist es nicht möglich alle Parameter perfekt zu modellieren. Um den-

noch die Wahrscheinlichkeit der Übertragbarkeit zu erhöhen, werden bei dem An-
satz der Domainrandomization die einzelnen Simulationsparameter bei jedem Trai-
ningsdurchlauf zufällig eingestellt. Diese sind typischerweise die Physikparameter
wie Masse oder Reibung, Offsets, Latenzen und Rauschen von Motoren, Sensor-
rauschen und Umgebungsparameter wie Positionen und Aussehen von Objekten.
Auf diese Weise lernt der Agent generelles Verhalten in verschiedenen Umgebungen
[35].
Wenn die realen Bedingungen in der Zufallsverteilung liegen, ist es möglich,

die Strategie direkt ohne weiteres Lernen in die echte Umgebung zu übertragen
(Zero-Shot) [34, 31]. Dabei gilt es, die Breite der Zufallsverteilung abzuwägen. Eine
zu breite Verteilung kann zu suboptimalen und konservativen Strategien führen,
während andererseits eine zu enge Verteilung dazu führen kann, dass die echten
Parameter außerhalb liegen und somit keine Übertragung in die echte Umgebung
möglich ist [34].
Insgesamt zeigt sich, dass der Reality Gap nicht vollständig vermieden wer-

den kann. Durch Verfahren wie Systemidentifikation und Domainrandomization
lässt sich die Lücke jedoch so weit verkleinern, dass Strategien mit höherer Wahr-
scheinlichkeit erfolgreich von der Simulation auf die reale Welt übertragen werden
können. Damit wird der Simulationseinsatz trotz unvermeidbarer Abweichungen
zu einem zentralen Werkzeug für das effiziente Training in der Robotik.

2.3 Booster T1 Roboter

Um schnell mit einem RL-Projekt starten zu können, sollte ein Roboter gewählt
werden, für den es bereits erprobte Simulationsmodelle gibt. Folgend ist es möglich,

10

2 GRUNDLAGEN 2.3 Booster T1 Roboter

auf die Systemidentifikation zu verzichten. Weiterhin sollten Roboter bevorzugt
werden, die besonders robust sind, da das Testen von Strategien auf echten Robo-
tern zu instabilem Verhalten führen kann. Für dieses Projekt fiel die Wahl auf den
T1 von Booster Robotics (siehe Abbildung 2.1). Ein großer Vorteil des Roboters ist
die bereits existierende Trainings- und Simulationsumgebung Booster Gym. Diese
beinhaltet bereits ein komplett aufgesetztes Training für das Laufen des T1.

Abbildung 2.1: Booster T1 in der La-
borumgebung.

Abbildung 2.2: Gelenk- und Segment-
bezeichnungen des
Booster T1; entspricht
der in Booster Gym
verwendeten Numme-
rierung.

2.3.1 Aufbau des Roboters

Der Roboter wird von 23 Brushlessmotoren unterschiedlicher Größen und Stärken
angetrieben (siehe Abbildung 2.2). Diese Motoren gelten als besonders robust und
haben einen hohen Kraft-zu-Gewicht-Anteil [37]. Dabei kann der Motor im Knie
130 Nm an Drehmoment erzeugen, was auch für besonders harte Schüsse reicht. Als
Kamerasystem dient eine Intel Realsense D455, die sowohl Tiefen- als auch Farb-
bilder der Umgebung erzeugen kann. Damit der T1 seine Ausrichtung wahrnehmen
kann, besitzt er in seinem Oberkörper eine IMU die lineare Beschleunigungen und
Winkelgeschwindigkeiten bereitstellt, aus denen die Ausrichtung errechnet wer-
den kann. Für die Berechnungen und Ansteuerungen hat der T1 zwei Rechner

11

2.3 Booster T1 Roboter 2 GRUNDLAGEN

im Oberkörper. Der erste ist ein Nvidia AGX Orin mit 32 GB RAM und einer
Grafikeinheit. Dieser wird für das Ausführen von rechenintensiven KI-Algorithmen
genutzt. Ein weiterer Rechner beinhaltet eine Intel i7 CPU und 8 GB RAM, wel-
cher für das Berechnen der Bewegungen benutzt wird.

12

3 METHODIK

3 Methodik

In diesem Kapitel wird die konkrete Umsetzung der Arbeit beschrieben. Aufbau-
end auf den in den Grundlagen dargestellten Konzepten werden hier die einzelnen
Schritte detailliert vorgestellt, mit denen das Schussverhalten des T1-Roboters ent-
wickelt, trainiert und schließlich auf den echten Roboter übertragen wurde. Dazu
gehört zunächst die Beschreibung der eingesetzten Simulationsumgebung, die es
ermöglicht, sowohl das Robotermodell, als auch die physikalischen Eigenschaften
der Umgebung realitätsnah abzubilden. Anschließend wird der Trainingsprozess
erläutert, in dem der Agent durch wiederholte Interaktion mit der Simulation
das gewünschte Verhalten erlernt. Ein weiterer Schwerpunkt liegt auf dem Be-
lohnungsdesign, das maßgeblich die Qualität und Stabilität des Lernprozesses be-
stimmt. Schließlich wird auf den Transfer von der Simulation auf den realen Robo-
ter eingegangen, wobei die notwendigen Anpassungen und Herausforderungen des
Sim-to-Real-Ansatzes thematisiert werden. Ziel dieses Kapitels ist es, die gesamte
technische Pipeline transparent darzustellen und die einzelnen Umsetzungsschritte
nachvollziehbar zu machen.

3.1 Simulation

Die Simulation bildet die Grundlage des Projekts. Sie umfasst sowohl die Um-
gebung als auch das Modell des Roboters. Als Ausgangspunkt der Entwicklung
diente die Booster Gym [38]. Sie stellt ein vollständiges Set-up für Simulation und
Training bereit und ist darauf ausgelegt, einem T1 das Laufen beizubringen. Die
Booster Gym ist erprobt und hat gezeigt, dass sich damit Strategien entwickeln
lassen, die auch auf den echten Roboter übertragbar sind. Technisch basiert sie
auf der Nvidia Isaac Gym [39].
Im Folgenden wird der Aufbau der Isaac Gym erläutert. Dabei liegt der Fokus

auf den Komponenten, die für das Schusstraining entscheidend sind.

3.1.1 Aufbau der Simulation

Grob lässt sich Issac Gym in drei Systeme aufteilen (siehe Abbildung 3.1). Ers-
tens die Lernumgebung, welche die Logik für das Lernen beinhaltet. Zweitens die
Environment-Logik, welche alle nicht-physikalischen Aspekte der Simulation ver-
waltet. Dies umfasst das Laden von Modellen, das Verwalten der Beobachtun-
gen und Belohnungen und alle weiteren nicht-physikalischen Logiken. Als Drittes
dient die Physik-Engine PhysX von Nvidia zum Berechnen aller physikalischen
Vorgänge.
Die Lernumgebung bekommt Beobachtungen und Belohnungen von der Environment-

Logik und gibt Aktionen an diese zurück. Die Kommunikation mit PhysX erfolgt

13

3.1 Simulation 3 METHODIK

über die Isaac Gym Tensor API, welche die Aktionen weitergibt. Im Gegenzug lie-
fert PhysX nach jedem Zeitschritt ein Update der physikalischen Zustände zurück,
das anschließend in die Environment-Logik einfließt. Dort können mehrere Um-
gebungen parallel definiert werden. Jede dieser Umgebungen enthält stets einen
Actor – in diesem Fall den Roboter – sowie die dazugehörige Umgebung. Sie sind
physikalisch voneinander getrennt und interagieren nicht miteinander.

Abbildung 3.1: Isaac Gym – Komponenten und Datenfluss der RL-
Simulationsarchitektur: Lernumgebung (Strategie/Training),
Environment-Logik (Beobachtungen, Belohnungen, Aktionswei-
tergabe) und PhysX (GPU-basierte Physik) mit Kommunikation
über die Isaac-Gym-Tensor-API. Quelle: Makoviychuk et al.
(2021) [39].

Jede Umgebung stellt dabei einen eigenen physikalischen Raum dar, in dem Ob-
jekte, die als Rigid Bodies bezeichnet werden, existieren. Ein Rigid Body ist durch
seine Form, Position, Rotation und Geschwindigkeit definiert. Der Actor kann aus
mehreren Rigid Bodies bestehen, die durch Gelenke miteinander verbunden sind.
Welche unterschiedliche Freiheitsgrade (Degrees of Freedom, DOF) aufweisen, die
bestimmen, in welchen Richtungen sich das Gelenk bewegen kann; zum Beispiel
hat ein Servomotor nur einen Freiheitsgrad, während ein Kugelgelenk zwei hat.
Mit der API können die wichtigsten Eigenschaften des Robotermodells abge-

fragt werden. Sie liefert Informationen zu Position, Orientierung sowie linearen
und Winkelgeschwindigkeiten der Rigid Bodies. Darüber hinaus stellt sie für die

14

3 METHODIK 3.1 Simulation

Freiheitsgrade Winkelpositionen und -geschwindigkeiten bereit und ermöglicht den
Zugriff auf Kontaktkräfte zwischen Objekten.
Die Umgebung mit Beobachtungen und Belohnungen, der Lernprozess und PhysX-

Parameter definieren zusammen einen Task. Der explizite Aufbau des Tasks für
das Schießen soll im folgenden dargestellt werden.

3.1.2 Umgebung und Robotermodell

Das mit der Booster Gym gelieferte Robotermodell des T1 enthält bereits alle
relevanten Motoren, Massen und Formen. Neben den sichtbaren Formen existie-
ren vereinfachte Kollisionsformen. Sie bestimmen, wie Kollisionen berechnet wer-
den, und reduzieren dabei die Komplexität der Simulation. In dem Modell des T1
werden Beine als Zylinder und Füße sowie Oberkörper als Rechtecke vereinfacht
(siehe Abbildung 3.2). Damit findet eine vereinfachte Kollision zwischen Ball und
Fuß statt. Das vergrößert den Reality-Gap, wird aber in Kauf genommen, um eine
schnellere Simulation zu ermöglichen.
Der Ball wird als eine Kugel der Masse 0,2 kg und mit einem Durchmesser

von 0,15 m modelliert. Der Task ist so aufgebaut, dass in einer Umgebung der
Ball immer vor dem linken Fuß des Roboters platziert wird (siehe Abbildung 3.3).
Das Koordinatensystem ist so ausgerichtet, dass der Roboter in Richtung X-Achse
schaut, parallel zur Y-Achse steht und die Z-Achse nach oben zeigt. Die Umgebung
ist nicht statisch aufgebaut, sondern wird zufällig initialisiert.

Abbildung 3.2: Vereinfachte Kollisions-
formen im T1-Modell:
Zylinder für Beinseg-
mente sowie Quader für
Füße und Oberkörper.

Abbildung 3.3: Schuss-Task in der Si-
mulation: Ball initial
vor dem linken Fuß des
T1, Roboter blickt ent-
lang der X-Achse (Y la-
teral, Z nach oben).

15

3.2 Training 3 METHODIK

3.1.3 Domain Randomization

Um den Reality Gap zu verringern, kommt die Booster Gym bereits mit eini-
gen Randomisierungen (siehe Tabelle A.3). So werden beim Initialisieren eines
Roboters deren Parameter für die Freiheitsgrade und die Massen der einzelnen
Bestandteile des Roboters zufällig aus einem gewissen Bereich gewählt. Dadurch
erhält jeder simulierte Roboter leicht abweichende Eigenschaften. Das fördert Stra-
tegien, die auf unterschiedliche T1 Roboter übertragbar sind – denn auch die realen
Roboter weichen in diesen Punkten voneinander ab.
Bei jedem Zurücksetzen einer Umgebung werden zudem weitere Parameter zufällig

verändert. Dazu gehören die Anfangspositionen der Motoren, damit der Actor mit
unterschiedlichen Startkonfigurationen zurechtkommt.
Um zum Lernen in diversen Ausgangssituationen beizutragen, werden die initiale

Rotation des Roboters um die Z-Achse und die Position des Balls vor dem linken
Fuß in einem gewissen Bereich zufällig gewählt.
Weiterhin wird eine Ansteuerungsverzögerung simuliert, indem die Weitergabe

der Aktionen an die Physik-Engine um ein zufälliges Zeitintervall verzögert wird.
Dies ist wichtig, da auch die reale Hardware Kommunikation und Signalübertragung
nicht verzögerungsfrei ist und somit ein realistischeres Verhalten nachgebildet wer-
den kann.
Um authentische Sensorwerte und Beobachtungen nachzustellen, wird ein Rau-

schen addiert, das nach dem Prinzip einer Gaußverteilung erzeugt wird.

3.2 Training

Unter Training versteht man den Prozess, bei dem der Agent durch wiederholte
Interaktion mit der simulierten Umgebung ein Zielverhalten erlernt. Er sammelt
dabei Erfahrungen und leitet aus diesen Verbesserungen für seine Strategie ab.
Dieses Kapitel erläutert den Aufbau und Ablauf des Trainings.

3.2.1 Ablauf des Trainigs

Zu Beginn des Trainings werden alle Umgebungen wie in Abschnitt 3.1.2 beschrie-
ben initialisiert. Um die Parallelisierbarkeit der Simulation auszunutzen, werden
4096 Umgebungen gleichzeitig erstellt. Die Anzahl an möglichen Umgebungen wird
durch die Hardware des Trainingsrechners limitiert. Anschließend werden die ein-
zelnen Simulationsschritte ausgeführt.
Ein Trainingsschritt entspricht 0,02 s. Zunächst werden die Aktionen des Actors

relativ zu den Motor-Standardstellungen in Zielpositionen übersetzt. Anschlie-
ßend laufen zehn Physikberechnungen (Physikschritte) à 0,002 s ab, wobei der

16

3 METHODIK 3.2 Training

Verzögerungsparameter bestimmt, in welchem Schritt die Aktion an die Physiken-
gine übergeben wird (vgl. Abschnitt 3.1.3).
Da die Physikengine Drehmomente erwartet, müssen die Zielpositionen erst um-

gewandelt werden. Dies geschieht nach folgenden Vorgehen:

q̃i(t) = q⋆i
(
t−∆tact

)
(verzögertes Ziel) (3.1)

τPDi (t) = Kp,i

(
q̃i(t)− qi(t)

)
−Kd,i q̇i(t) (PD-Regler) (3.2)

τ frici (t) = min
(
τ ci , |τPDi (t)|

)
sgn

(
τPDi (t)

)
(Coulomb-Reibung) (3.3)

τi(t) = clip
(
τPDi (t)− τ frici (t), −τmax

i , τmax
i

)
(Sättigung) (3.4)

Mit clip(x, a, b) = max{min{x, b}, a}. Hierbei bezeichnet q⋆i die vom Actor vorge-
gebene Sollposition des Gelenks, die aufgrund der modellierten Verzögerung ∆tact
erst zeitversetzt berücksichtigt wird. Der PD-Regler erzeugt daraus ein Drehmo-
ment τPDi , wobei Kp,i die Steifigkeit und Kd,i die Dämpfung darstellt. Um die stati-
sche Reibung zu berücksichtigen, wird zusätzlich ein Reibmoment τ frici abgezogen,
das durch die Reibschwelle τ ci begrenzt ist. Schließlich wird das resultierende Dreh-
moment τi auf die zulässigen Grenzwerte ±τmax

i beschnitten. Dem folgend wird ein
Physikschritt ausgeführt und die Motorpositionen werden aktualisiert.
Sind alle Physikschritte abgeschlossen, erfolgt die Aktualisierung der Umge-

bungszustände. Dazu zählen der Actor Root State und der Rigid Body State, die
Informationen über Position, Ausrichtung sowie Linear- und Winkelgeschwindig-
keiten liefern. Ergänzend wird im Contact Force State die Kraft zwischen den sich
berührenden Objekten erfasst.
Im Anschluss wird ermittelt, ob Stöße und Tritte auftreten und wie stark sie aus-

fallen. Die resultierenden Impulse werden im nächsten Physikschritt angewendet.
Danach werden die Abbruchbedingungen geprüft. Tritt eine Bedingung ein, wird
die gesamte Umgebung zurückgesetzt. Anschließend werden die Teilbelohnungen
berechnet und zur Gesamtbelohnung aufsummiert. Zuletzt werden die Beobach-
tungen sowie die privilegierten Beobachtungen (nur für den Critic) erzeugt. Liegen
Beobachtungen und Belohnungen vor, beginnt das Training.

3.2.2 Implementierung

Das Training ist nach der PPO-Implementierung [29] umgesetzt, die eine Actor
Critic Architektur benutzt. Dies umfasst zwei neuronale Netze, deren Aufbau in
Tabelle A.8 beschrieben ist. Der Aufbau des Trainings und die Einstellung der
Parameter wurden von der Booster Gym übernommen (siehe Tabelle A.7 & Ta-
belle A.6). Als Eingabe bekommen der Actor und der Critic Beobachtungen (siehe
Tabelle A.1 & Tabelle A.2), welche in einem asymmetrischen Trainingsprozess [30]

17

3.3 Lernsignale 3 METHODIK

verwertet werden. Dafür bekommt der Critic mehr Informationen über die Um-
gebung als der Actor, welche die bereits erwähnten privilegierten Beobachtungen
sind. Die Ausgabe des Actors sind die Abweichungen von den Standardmotorpo-
sitionen (siehe Abschnitt 3.2.1) der Unterkörpermotoren (Gelenk-ID 11-22, siehe
Abbildung 2.2). Der Critic gibt einen einzelnen Wert zurück, der bewertet, wie
gut ein aktueller Zustand ist. Ziel des Trainings ist es, dass der Actor lernt, wie
er durch seine Aktionen in möglichst gut bewertete Zustände kommt. Der Critic
hingegen lernt, wie er Zustände der Umgebung so bewerten kann, dass er den er-
warteten zukünftigen Belohnungswert eines Zustands abschätzt und so dem Actor
eine Orientierung für die Auswahl seiner Aktionen gibt.
In einer Trainingsepoche werden 24 Trainingsschritte ausgeführt. Dabei werden

Erfahrungen in Form von Beobachtungen und Belohnungen angesammelt und für
das anschließende Training benutzt. Das Optimieren findet in 20 Mini-Epochen
statt. In jeder Mini-Epoche werden die Netzwerke einmal aktualisiert. Anschlie-
ßend startet eine neue Epoche mit den aktualisierten Netzwerken. Details zu den
Parametern des Trainings sind in Tabelle XX zu finden. Um diesen Trainings-
prozess zu optimieren und Fehler zu beheben, ist eine wie folgend beschriebene
Trainingsüberwachung entscheidend.

3.2.3 Trainingsüberwachung

Um einen Einblick in den Fortschritt und die Qualität des Trainings zu bekom-
men, werden verschiedene relevante Informationen im Loggingtool Weights and
Biases [40] gespeichert. Dazu zählen unter anderem die einzelnen Belohnungen,
wie stark die Vorhersage der Modelle vom gewünschten Zielwert abweicht (loss)
und der Entropy-Wert des PPO. Ebenso wird alle 500 Epochen ein fünfsekündiges
Video gespeichert. Da die gespeicherten Aufnahmen direkt einen unkomplizierten
Einblick geben, ob das Hauptziel erreicht wurde, stellten sie sich als sehr nützliches
Evaluationswerkzeug heraus. Ebenso konnte unerwünschtes Verhalten leicht iden-
tifiziert werden.

3.3 Lernsignale

Das Finden eines Belohnungsdesigns, das stabiles Schießen ermöglicht, ist die zen-
trale Aufgabe dieser Arbeit. Dafür wurden verschiedene Belohnungen eingeführt
und getestet. Dieser Abschnitt soll neben den Belohnungen auch die Evaluierungs-
strategie erläutern. Für eine vollständige Liste der Belohnungen, siehe Tabelle A.4.

18

3 METHODIK 3.3 Lernsignale

3.3.1 Belohungsdesign

Die Belohnungen für den Schuss werden in zwei Phasen vergeben: zuerst für
Zustände vor dem Schuss in Phase eins, in Phase zwei werden Belohnungen für
Zustände nach dem Schuss vergeben.
Phase eins beinhaltet dichte Belohnungen, die den Agent in Richtung eines

Schusses leiten sollen. Die wichtigste Belohnung wächst mit sinkender Distanz
zwischen Fuß und Ball exponentiell. Weiterhin wird eine Oberkörperausrichtung
in Schussrichtung belohnt, was eine richtige Ausrichtung des Agents vor dem Schie-
ßen bewirkt.
Alle Belohnungen, die in Phase 2 auftreten, sind spärliche Belohnungen, die

nur vergeben werden, wenn der Agent den Ball schießt. Dazu zählt die Hauptbe-
lohnung, die eine hohe Geschwindigkeit des Balles in eine Zielrichtung belohnt.
Konkret bedeutet es, dass Verhalten belohnt werden soll, das zu einem starken
Schuss führt. Je länger der Ball nach dem Schuss rollt, desto geringer fällt die
Belohnung aus. Dies soll ermöglichen, dass Belohnungen, die für das Stehen nach
dem Schuss zuständig sind, mit der Zeit überwiegen. Es hat sich gezeigt, wenn
der Agent eine zu dominante Schussbelohnung bekommt, zu starke Schüsse erlernt
werden, die das anschließende Stehen verhindern. Um dies zu vermeiden, wurde
die maximale Belohnung für die Ballgeschwindigkeit in Zielrichtung begrenzt. Ei-
ne ergänzende Belohnung für die Ballbeschleunigung dient als spärliche Belohnung
des Schießens.
Um das Überleben (nicht Erreichen einer Abbruchbedingung, siehe Abschnitt 3.3.3)

des Agents zu belohnen, wird kontinuierlich eine Belohnung vergeben, solange der
Agent lebt. Diese Belohnung ist vor dem Schießen halb so groß, wie danach. Es
dient einerseits als spärliche Belohnung für das Schießen, und andererseits soll der
Agent in der Phase vor dem Schießen ermutigt werden, auch riskantere Aktionen
auszuprobieren, die zu einem verbesserten Schussverhalten führen.
Eine weitere, wichtige Gruppe von Belohnungen soll sicherstellen, dass der Robo-

ter nicht umfällt. Eine Bestrafung des Agents erfolgt, je weiter seine Oberkörperhöhe
vom Aufrechten Stehen (0,68 m) entfernt ist und nimmt quadratisch zu. Zusätzlich
wird eine Bestrafung eingeführt, die das Nicht-Aufrechtstehen des Oberkörpers
verhindern soll. Dafür wird der x- und y-Anteil des Gravitationsvektors im Koor-
dinatensystem des Agents aufsummiert. Diese Bestrafung steigt ebenfalls quadra-
tisch an, je schräger der Agent steht. Da Hinfallen mit einer Beschleunigung des
Oberkörpers einhergeht, wird diese ebenfalls bestraft. Im gleichen Sinne wird eine
Geschwindigkeit des Agents in der Z-Achse bestraft.
Damit der Agent lernt, nach dem Schuss stillzustehen und während des Schus-

ses seinen Oberkörper möglichst wenig zu bewegen, wird er belohnt, je näher seine
Geschwindigkeiten in der X- und Y-Achse an 0 m/s sind. Auch wird eine Win-
kelgeschwindigkeit in der Z-Achse von 0 rad/s belohnt und durch eine ergänzende

19

3.3 Lernsignale 3 METHODIK

Bestrafung der Winkelgeschwindigkeit unterstützt.
Um einen Anreiz für möglichst energieeffiziente und ruhige Bewegungen zu schaf-

fen, wurden verschiedene Bestrafungen eingeführt. Zentral ist dabei die Bestrafung
der Aktionsraten. Diese entspricht der Distanz zwischen den aktuellen Motorpo-
sitionen und den Positionen aus dem letzten Trainingsschritt. Damit sollen große
Änderungen in den Aktionen unwahrscheinlicher werden. Zusätzlich wird bestraft,
wenn die Motoren hohe Drehmomente aufbringen müssen und diese Drehmomen-
te nahe an die Hardwaregrenzen gelangen. Ähnlich werden Geschwindigkeit, Be-
schleunigung und Limits der Freiheitsgrade bestraft. Ergänzend wird eine hohe
Leistung bestraft.

rpower = −
∑
i

|τi · q̇i|

Dabei bezeichnet τi das vom i-ten Motor aufgebrachte Drehmoment und q̇i dessen
Winkelgeschwindigkeit. Das Produkt entspricht der Leistung des Motors. Durch
die Summation über alle Motoren und das negative Vorzeichen wird erreicht, dass
hohe Gesamtleistung als Bestrafung wirkt. Dies soll energieeffiziente Bewegungen
ermöglichen.
Unkontrolliertes Fußverhalten ist ein Problem, das stabiles Stehen und Schießen

erschwert. Um dies zu verhindern, wird der Agent bestraft, wenn seine Füße in der
Yaw- (Drehung um Z-Achse) und Pitch-Ausrichtung (Drehung um X-Achse) von
0 Grad abweichen. Ergänzend dazu wird er bestraft, wenn die Yaw-Ausrichtungen
der Füße unterschiedlich sind. Damit der Agent beim Schießen nicht seine Füße
über den Boden schiebt, wird das Gleiten der Füße über den Boden bestraft.
Das Anpassen dieser Belohnungen stellt eine zentrale Aufgabe der Arbeit dar.

3.3.2 Evaluationsstrategien

Belohnungen sollen dafür sorgen, dass gewünschtes Verhalten vermehrt auftritt
und unerwünschtes Verhalten ausbleibt. Dafür müssen die Belohnungen passend
skaliert sein und zum richtigen Zeitpunkt vergeben werden. Um dies zu bewältigen,
wurden verschiedene Strategien entwickelt.
Zu Beginn lohnt es sich, mit einem minimalen Set an Belohnungen zu starten.

Anfangs wurden die Belohnungen für das Lauftraining aus der Booster Gym be-
nutzt. Diese sind nicht minimal für das Schießen, führen aber erprobterweise zu
einem stabilen Verhalten. Ergänzt wird das Initialset durch die Hauptbelohnung,
Ballgeschwindigkeit in Zielrichtung. Es hat sich herausgestellt, dass es sinnvoll ist,
eine Hauptbelohnung zu haben, die in der Skalierung die restlichen Belohnungen
übertrifft und darüber hinaus das Zielverhalten möglichst direkt belohnt.
Die relative Skalierung der Belohnungen untereinander spielt eine entscheidende

Rolle. Belohnungen mit höheren Werten werden stärker beim Training optimiert
als solche mit niedrigeren Werten. Dies kann im Extremfall allerdings dazu führen,

20

3 METHODIK 3.3 Lernsignale

dass wenn eine Belohnung zu dominant ist, andere Belohnungen völlig ignoriert
werden. So führt eine übermäßige Belohnung der Ballgeschwindigkeit zum sehr
starken Schießen des Agents, der jedoch anschließend umfällt. Die Skalierung ent-
scheidet so über die Priorität der Belohnungen.
Das Einsehen und Überwachen der Skalierungen ist in Weights and Biases

möglich. Abbildung 3.4 zeigt beispielhaft drei Belohnungen mit unterschiedlichen
Skalierungen. Es ist zu sehen, dass die Hauptbelohnung (Abb. 3.4c) zu Beginn
eine niedrigere Skalierung hat als die Belohnung für die lineare Geschwindigkeit
x (Abb. 3.4b). Das lässt sich damit erklären, dass erst im späteren Trainings-
verlauf der Agent lernt, den Ball zu schießen, und dadurch die Belohnung für
die Ballgeschwindigkeit bekommt. Sodass erst nach ca. 1000 Trainingsepochen die
Ballgeschwindigkeit dominanter als die Linare Geschwindigkeit wird. Daraus lässt
sich ableiten, dass erst mit dem Trainingsfortschritt zu erkennen ist, ob die Ska-
lierungen richtig gesetzt wurden.

21

3.3 Lernsignale 3 METHODIK

(a) Ballbeschleunigung

(b) Lineare Geschwindigkeit x

(c) Ballgeschwindigkeit in Zielrichtung

Abbildung 3.4: Beispielhafte Skalierungen von Belohnungen im Trainingsverlauf.
Dabei ist zu sehen, dass die Belohnung der Ballgeschwindigkeit in
Zielrichtung erst im späteren Trainingsverlauf die Belohnung der
linearen Geschindigkeit x als dominante Belohnung ablößt.

Dichte Belohnungen sollten eingeführt werden, wenn das gewünschte Verhalten
trotz spärlicher Hauptbelohnung ausbleibt. Diese schränken die Exploration ein,
können im Gegenzug den Agent schneller zu einem gewünschten Verhalten bringen.
So führt das Belohnen einer geringen Distanz zwischen Fuß und Ball dazu, dass

22

3 METHODIK 3.3 Lernsignale

der Agent schneller versteht, dass der Fuß zum Schießen in Richtung Ball bewegt
werden muss, allerdings macht es im Gegenzug ein Ausholen mit dem Bein vor
dem Schießen unwahrscheinlicher.
Einzelne Belohnungen können im Gegensatz zueinanderstehen. So werden schnel-

le Motorgeschwindigkeiten bestraft, die im Gegensatz zu den Belohnungen für
einen harten Schuss stehen. Dies kann, bei falscher Skalierung, das Erlernen eines
optimalen Verhaltens, bezogen auf einzelne Belohnungen, verhindern. Andererseits
kann bei passender Skalierung ein Verhalten gefunden werden, welches beide Be-
lohnungen berücksichtigt. Wie stark die beiden Belohnungen relativ zueinander
skaliert sind, entscheidet dabei, welche Belohnung wie stark berücksichtigt wird.
Eine besondere Herausforderung bei dem Design und der Evaluation war der

zweiphasige Charakter der Belohnungen. Das Wegfallen einzelner Belohnungen,
sobald der Ball geschossen ist, interpretiert der Agent als Bestrafung, da die Ge-
samtbelohnung abfällt. Um dies zu kompensieren, wurden die dichten Belohnun-
gen, die nur in der Vorschussphase oder in der Nachschussphase existieren, mi-
nimiert. Zusätzlich wurden frühere spärliche Belohnungen wie die Berührung des
Balles ersetzt durch die Belohnung für die Ballgeschwindigkeit in Zielrichtung.
Diese Belohnung tritt zwar nur spärlich auf, wird aber anschließend über einen
längeren Zeitraum vergeben. Dies soll dazu beitragen, den Wegfall einzelner Be-
lohnungen in der Nachschussphase zu kompensieren.
Um die Belohnungen für den Schuss auf Fehler zu überprüfen, reicht es nicht

aus, sich die Gesamtskalierung wie in Abbildung 3.4 anzuschauen. Es ist zusätzlich
erforderlich, sich die Skalierungen über den zeitlichen Verlauf anzuschauen (siehe
Abbildung 3.5). Dabei ist zu erkennen, dass während des Schusses (siehe Anstieg
der Belohnung der Ballgeschwindigkeit) eine starke Bestrafung für die Aktionsrate
vergeben wird. Um eine in der Bilanz positive Gesamtbelohnung zu bekommen,
muss beachtet werden, dass die Bestrafung ausreichend ausgeglichen wird. Sonst
lernt der Agent nicht das Schießen, da er für die Schussbewegung insgesamt bestraft
wird.
Neben den bereits ausgeführten Belohnungen sind Abbruchbedingungen eine

weitere Möglichkeit, Einfluss auf das Erlernen des Verhaltens zu nehmen.

23

3.3 Lernsignale 3 METHODIK

Abbildung 3.5: Verlauf von ausgewählten Belohnungen während eines Schusses.
Das starke Ansteigen der Belohnung für die Ballbeschleunigung in
Zielrichtung markiert den Zeitpunkt der Ballberührung.

3.3.3 Abbruchbedingungen

Wenn Abbruchbedingungen (siehe Tabelle A.5) eintreten, wird eine Umgebung
zurückgesetzt und beendet eine kontinuierliche Sammlung von Beobachtungen und
Belohnungen. Sie entscheiden, welche Erfahrungen und Belohnungen für den Agent
zugänglich sind. Die Bedingungen sollten so gewählt werden, dass sie eine Abgren-
zung zu Verhalten bilden, welches nicht mitgelernt werden soll. So ist das Aufstehen
nach einem Fall nicht Teil des Schusstrainings.
Um dementsprechend eine Abgrenzung von dem Fallen zu ermöglichen, gibt

es zwei Abbruchbedingungen, die bei einem Fall eintreten. Erstens, wenn der
Oberkörper eine gewisse Höhe unterschreitet und zweitens, wenn die Geschwin-
digkeit des Oberkörpers zu groß wird.
Zum Abbruch kommt es auch, wenn der Ball zu lange nicht berührt wurde,

oder eine gewisse Geschwindigkeit nach dem Schießen unterschreitet. Diese dienen
dazu, den Agent von Belohnungen auszuschließen, die lediglich durch langes Stehen
zustande kommen.
Eine weitere Bedingung bricht ab, wenn der Ball lange genug gerollt ist. Das

entspricht einem Abbruch im Erfolgsfall und sorgt dafür, dass der Agent von vorn
beginnen kann. Die letzte Bedingung bricht ab, wenn der Durchlauf zu lange dauert
und keine andere Abbruchbedingung eintritt. Dies soll endlose Durchläufe unter-
binden.

24

3 METHODIK 3.4 Sim-to-Real

3.4 Sim-to-Real

Das finale Ziel ist, dass die gelernte Strategie auch auf einen echten T1 Roboter
läuft. Dies ist allerdings nicht ohne Weiteres möglich. Sowohl das Transfersetup
muss stimmen als auch der gesamte Trainings- und Simulationsprozess. Im Fol-
genden soll die Software beschrieben werden, welche die in der Simulation gelernte
Strategie ausführt.

3.4.1 Set-up auf dem Roboter

Ausgeführt wird die Strategie auf dem Intel Rechner des T1, da dieser ausreichend
Leistung besitzt, um das Actor-Modell auszuführen. Wichtig ist das Timing beim
Ausführen der Strategie und beim Übergeben der Motorsignale. Die Strategie wird
wie im Training alle 0,02 s ausgeführt und die Motorsignale werden im gleichen
Zeitintervall wie der Simulationsschritt von 0,002 s übergeben. Dabei werden diese
gedämpft, indem immer nur 20% des neuen Motorsignals übergeben werden:

qfiltered
t = 0.8 · qfiltered

t−1 + 0.2 · qtarget
t

Hierbei ist qfiltered
t das geglättete Motorsignal zum Zeitpunkt t, qfiltered

t−1 das vorherige
geglättete Signal und qtarget

t das aktuelle Zielsignal aus der Strategie. Durch diese
rekursive Mischung wird erreicht, dass sprunghafte Änderungen im Motorsignal
abgefedert werden und die Bewegungen des Roboters glatter und stabiler verlaufen.
Mit diesem Set-up können die Strategien auf dem echten Roboter getestet wer-

den. Dabei müssen weitere Anpassungen an der Strategie vorgenommen werden,
bevor ein stabiles Schussverhalten auf dem echten Roboter laufen kann.

3.4.2 Sim-to-Real-Transfer

Trotz vorbeugender Maßnahmen wie Randomization hat sich der Transfer der
Strategie auf den echten Roboter als eine Herausforderung erwiesen. Eines der
größten Probleme war ein Zittern im ganzen Körper, was zu hektischen Bewegun-
gen geführt hat. Dadurch konnte der Roboter nicht stabil stehen und die ruck-
artigen Bewegungen waren sowohl für den Roboter als auch für den Menschen
gefährlich. Ein weiteres Problem war, dass der Roboter vor jedem Schuss sehr
lange gewartet hat bzw. gar nicht geschossen hat. Beide Probleme konnten mit
Finetuning behoben werden. Dabei wird die bereits existierende Strategie weiter-
trainiert mit veränderten Parametern wie den Belohnungsskalierungen.
Um das Zittern zu verhindern, wurden diverse Bestrafungen erhöht die eine

ruhige Bewegung ermöglichen sollen. Das umfasst eine höhere Bestrafung der Ak-
tionsrate, damit schnelle und große Änderungen stärker sanktioniert werden; hohe
Drehmomente, die vorwiegend bei ruckartigen Bewegungen auftreten; die Fuß-
Yaw-Ausrichtung und den Unterschied zwischen den Füßen; sowie das Gleiten der

25

3.4 Sim-to-Real 3 METHODIK

Füße über den Boden, um ein stabiles Fußverhalten zu erzwingen. Anschließend
wurde die Strategie, die das Problem mit dem Zittern aufwies, weitertrainiert. Dies
führte zu ruhigem und stabilem Verhalten.
Um das Warten vor dem Schuss zu verhindern, wurde eine zusätzliche Bestrafung

eingeführt. Sie steigt mit der Zeit an, in der der Ball nicht berührt wird, und
fällt nach einem Schuss sofort weg. Dadurch wird nicht nur schneller geschossen,
sondern der Wegfall der Bestrafung dient gleichzeitig als spärliche Belohnung. Mit
dieser Anpassung konnte die bereits weitertrainierte Strategie erneut optimiert
werden. Anschließend hat der Roboter deutlich schneller den Schuss ausgeführt.
Das Ergebnis ist ein Zero-Shot Transfer des Verhaltens aus der Simulation in die
echte Umgebung, ein Weitertrainieren mit echten Daten war nicht mehr nötig.

26

4 DISKUSSION

4 Diskussion

Um eine Schussbewegung für den T1 Roboter zu entwickeln, wurde eine Simulation
entworfen, die den Roboter und seine Umgebung simuliert. Mit einem angepassten
Belohnungsdesign ist es gelungen, einen Trainingsprozess umzusetzen, der in der
Lage ist, eine Strategie zu finden, welche sowohl in der Simulation (siehe Abbil-
dung 4.1a) als auch auf den echten Roboter funktioniert (siehe Abbildung 4.1b).
Ein weiteres Trainieren mit echten Daten war nicht notwendig.

(a) Simulation

(b) Echter Roboter

Abbildung 4.1: Schuss-Sequenzen in der Simulation (oben) und auf dem echten
Roboter (unten). Es ist zu erkennen, dass zum Schießen ein kraft-
voller Ausfallschritt genutzt wird.

Dabei war das Einführen von dichten Belohnungen, die jeweils nur in der Phase
vor dem Schießen auftreten, ein entscheidender Aspekt. Ausschließlich spärliche
Zielbelohnungen führten nur sehr langsam zu einem Schussverhalten, da es nur
selten vorkommt, dass der Roboter in der Simulation den Ball zufällig berührt. Die
dichten Belohnungen konnten hingegen zuverlässig in Richtung Schussbewegung
führen und verhalfen den Agent so schneller zu einem Schussverhalten.
Des Weiteren erwies sich das Finetuning als hilfreiche Maßnahme, um Transfer-

probleme zu lösen. Angepasst wurden dabei Belohnungen, die entweder neu hinzu-
gefügt oder in der Skalierung verändert wurden. Das Verfahren konnte erfolgreich
eingesetzt werden, um Probleme mit starkem Zittern und langem Warten vor dem
Schießen zu beheben, die ausschließlich auf dem echten Roboter auftraten.
Bemerkenswert ist, dass die Trainingsparameter und die Modellearchitektur für

das Laufen unverändert auch für das Schießen benutzt werden konnten. Das lässt

27

4 DISKUSSION

vermuten, dass diese ebenfalls für das Erlernen von weiteren Bewegungen genutzt
werden können.
Die Qualität der Strategie lässt sich sowohl an der Schusshäufigkeit als auch

an der erreichten Ballgeschwindigkeit in Zielrichtung messen. Dabei konnte in der
Simulation eine Schusshäufigkeit von 84 % mit einer Durchschnittsballgeschwin-
digkeit von 6,75 m/s in Zielrichtung erreicht werden. Die Testdurchläufe wurden
mit den gleichen Abbruchbedingungen und Randomisierungen wie im Training
durchgeführt. Tabelle 4.1 fasst die wichtigsten Kennzahlen aus der Simulation zu-
sammen.

Tabelle 4.1: Ergebnisse der Simulation des Schuss-Trainings

Kennzahl Wert Einheit

Anzahl Testdurchläufe 20.000 –
Erfolgreiche Schüsse 16.936 –
Umgefallene Roboter 365 –
Durchschnittliche Ballgeschwindigkeit in Zielrichtung 6,75 m/s
Standardabweichung Ballgeschwindigkeit in Zielrichtung 1,06 m/s
Maximale Ballgeschwindigkeit in Zielrichtung 11,55 m/s

Eine ähnliche Auswertung für die Strategie auf dem echten Roboter ist, aufgrund
des aufwendigeren Set-ups für das Tracking des Balles, ausstehend.
Die Erkenntnisse dieser Arbeit decken sich mit den bekannten Stärken von Re-

inforcement Learning für kontinuierliche Ganzkörperprobleme, wie unbegrenzte
Daten durch Simulation und das Erlernen komplexer Verhaltensweisen und deren
Herausforderungen wie datenintensives Training, Reality Gap und hohe Anforde-
rungen an das Belohnungsdesign [41, 21, 42, 43]. Aus den Erkenntnissen dieser
Arbeit lassen sich dementsprechend folgende praktische Leitlinien ableiten:

• Phasen–bewusstes Belohnungsdesign

• Dichte Hilfsbelohnungen, die zum Schuss führen

• Finetuning gegen Transferprobleme

28

5 FAZIT

5 Fazit

In dieser Arbeit wurde gezeigt, dass durch eine geeignete Kombination aus rea-
litätsnaher Simulation, gezieltem Belohnungsdesign und phasenbewusstem Trai-
ning, ein komplexes Ganzkörperverhalten wie das Schießen erfolgreich mit Re-
inforcement Learning erlernt und auf einen realen T1-Roboter übertragen werden
kann. Das zentrale Ziel, eine in der Simulation trainierte Strategie ohne zusätzliches
Training mit realen Daten direkt zu übertragen, konnte erreicht werden.
Besondere Herausforderungen wie der Sim-to-Real-Gap traten in Form unerwünschten

Verhaltens, wie dem Zittern des Körpers und Warten vor dem Schießen, auf. Diese
Schwierigkeiten konnten durch Finetuning in der Simulation und gezielte Anpas-
sungen im Belohnungsdesign erfolgreich entschärft werden. Damit liefert die Arbeit
ein praxistaugliches Vorgehen, das Zero-Shot-Deployment trotz unvermeidbarer
Diskrepanzen zwischen Simulation und Realität ermöglicht.
Die wesentlichen Beiträge dieser Arbeit lassen sich wie folgt zusammenfassen:

• Entwicklung einer RL-Pipeline für das Schießen auf humanoiden Robotern,

• systematisches Reward-Design als Blaupause für dynamische Bewegungen,

• ein einfaches Sim-to-Real-Rezept mit Finetuning zur Reduktion von Trans-
ferproblemen.

Damit konnte gezeigt werden, dass RL ein vielversprechender Ansatz ist, um
hochdynamische, kontinuierliche Bewegungen für humanoide Roboter zu reali-
sieren. Das Vorgehen lässt sich neben dem Schuss auch auf anderes Verhalten
wie Dribbeln oder Torwartbewegungen anwenden. Somit leistet die Arbeit einen
Beitrag zur Weiterentwicklung agiler und anpassungsfähiger Robotersysteme, die
langfristig das Spielgeschehen im Roboterfußball auf ein neues Niveau heben können
und die Spiele spannender machen.

29

6 AUSBLICK

6 Ausblick

Zentral für die Weiterentwicklung werden das Testen der Strategie auf weiteren
T1 Robotern und die Einführung eines Evaluationssystems für den echten Robo-
ter sein. Dies wird die Robustheit der Strategie prüfen. Bis jetzt wurde der Schuss
nur isoliert als einzelne Bewegung betrachtet. Zukünftig muss ein Schuss im Spiel
selbst funktionieren. Dies sorgt noch einmal für ganz andere Herausforderungen
und Ansprüche an Timing, Stabilität und Genauigkeit. Um dem Roboter mehr
Kontrolle über den Schuss zu geben, ist es überlegenswert, Parameter einzuführen,
die Aspekte des Schusses einstellen. Diese könnten etwa die Schussstärke oder das
Schussziel vorgeben, um den Schuss in diversen Situationen passend einzusetzen.
Zuletzt soll auch weiteres Verhalten mit RL umgesetzt werden. Erste Experimente
mit dem Dribbeln weisen darauf hin, dass dieses Verhalten ebenfalls von RL pro-
fitieren kann. Das Ziel soll sein, das gesamte Verhalten mit RL zu lernen. Dabei
ist es eine offene Frage, ob einzelne Bewegungen getrennt trainiert und von ei-
ner übergeordneten Strategie koordiniert werden oder direkt ein Gesamtverhalten
Ende-Zu-Ende gelernt wird.

30

Literatur Literatur

Literatur

[1] RoboCup Federation. “Objective,” RoboCup Federation, besucht am 21. Sep.
2025. Adresse: https://www.robocup.org/objective.

[2] C. S. Lin, P. R. Chang und J. Y.-S. Luh, “Formulation and optimization of
cubic polynomial joint trajectories for industrial robots,” IEEE Transactions
on Automatic Control, Jg. 28, S. 1066–1074, 1983. Adresse: https://api.
semanticscholar.org/CorpusID:119783730.

[3] J. Bobrow, S. Dubowsky und J. Gibson, “Time-Optimal Control of Robotic
Manipulators Along Specified Paths,” The International Journal of Robotics
Research, Jg. 4, Nr. 3, S. 3–17, 1985. doi: 10.1177/027836498500400301.
eprint: https://doi.org/10.1177/027836498500400301. Adresse: https:
//doi.org/10.1177/027836498500400301.

[4] A. Böckmann und T. Laue, “Kick motions for the NAO robot using dynamic
movement primitives,” in RoboCup 2016: Robot World Cup XX, S. Behnke,
R. Sheh, S. Sarıel und D. D. Lee, Hrsg., Cham: Springer International Pu-
blishing, 2017, S. 33–44, isbn: 978-3-319-68792-6. doi: 10.1007/978-3-
319-68792-6_3.

[5] Y. Ji, G. B. Margolis und P. Agrawal, DribbleBot: Dynamic Legged Manipu-
lation in the Wild, 3. Apr. 2023. doi: 10.48550/arXiv.2304.01159. arXiv:
2304.01159[cs]. besucht am 3. Okt. 2024. Adresse: http://arxiv.org/
abs/2304.01159.

[6] X. Huang u. a., Creating a Dynamic Quadrupedal Robotic Goalkeeper with
Reinforcement Learning, 10. Okt. 2022. doi: 10.48550/arXiv.2210.04435.
arXiv: 2210.04435[cs]. besucht am 12. Sep. 2025. Adresse: http://arxiv.
org/abs/2210.04435.

[7] Y. Ji u. a., Hierarchical Reinforcement Learning for Precise Soccer Shooting
Skills using a Quadrupedal Robot, 1. Aug. 2022. doi: 10.48550/arXiv.
2208.01160. arXiv: 2208.01160[cs]. besucht am 17. Apr. 2025. Adresse:
http://arxiv.org/abs/2208.01160.

[8] S. Liu u. a., From Motor Control to Team Play in Simulated Humanoid
Football, 25. Mai 2021. doi: 10.48550/arXiv.2105.12196. arXiv: 2105.
12196[cs]. besucht am 23. Apr. 2025. Adresse: http://arxiv.org/abs/
2105.12196.

31

https://www.robocup.org/objective
https://api.semanticscholar.org/CorpusID:119783730
https://api.semanticscholar.org/CorpusID:119783730
https://doi.org/10.1177/027836498500400301
https://doi.org/10.1177/027836498500400301
https://doi.org/10.1177/027836498500400301
https://doi.org/10.1177/027836498500400301
https://doi.org/10.1007/978-3-319-68792-6_3
https://doi.org/10.1007/978-3-319-68792-6_3
https://doi.org/10.48550/arXiv.2304.01159
https://arxiv.org/abs/2304.01159 [cs]
http://arxiv.org/abs/2304.01159
http://arxiv.org/abs/2304.01159
https://doi.org/10.48550/arXiv.2210.04435
https://arxiv.org/abs/2210.04435 [cs]
http://arxiv.org/abs/2210.04435
http://arxiv.org/abs/2210.04435
https://doi.org/10.48550/arXiv.2208.01160
https://doi.org/10.48550/arXiv.2208.01160
https://arxiv.org/abs/2208.01160 [cs]
http://arxiv.org/abs/2208.01160
https://doi.org/10.48550/arXiv.2105.12196
https://arxiv.org/abs/2105.12196 [cs]
https://arxiv.org/abs/2105.12196 [cs]
http://arxiv.org/abs/2105.12196
http://arxiv.org/abs/2105.12196

Literatur Literatur

[9] T. Haarnoja u. a., “Learning agile soccer skills for a bipedal robot with deep
reinforcement learning,” Science Robotics, 10. Apr. 2024, Publisher: Ameri-
can Association for the Advancement of Science. doi: 10.1126/scirobotics.
adi8022. besucht am 3. Okt. 2024. Adresse: https://www.science.org/
doi/10.1126/scirobotics.adi8022.

[10] “Booster T1, Made for Developers,” Booster Robotics, besucht am 21. Sep.
2025. Adresse: https://www.boosterobotics.com/booster-t1/.

[11] Sutikno, “(PDF) an overview of emerging trends in robotics and automa-
tion,” ResearchGate, 24. Juli 2025. doi: 10.11591/ijra.v12i4.pp405-
411. besucht am 1. Sep. 2025. Adresse: https : / / www . researchgate .

net/publication/379231219_An_overview_of_emerging_trends_in_

robotics_and_automation.

[12] H. Choi u. a., “On the use of simulation in robotics: Opportunities, challen-
ges, and suggestions for moving forward,” Proceedings of the National Acade-
my of Sciences of the United States of America, Jg. 118, Nr. 1, e1907856118,
28. Dez. 2020. doi: 10.1073/pnas.1907856118. besucht am 1. Sep. 2025.
Adresse: https://pmc.ncbi.nlm.nih.gov/articles/PMC7817170/.

[13] M. Guo, Y. Jiang, A. E. Spielberg, J. Wu und K. Liu, “Benchmarking ri-
gid body contact models,” in Proceedings of The 5th Annual Learning for
Dynamics and Control Conference, ISSN: 2640-3498, PMLR, 6. Juni 2023,
S. 1480–1492. besucht am 20. Sep. 2025. Adresse: https://proceedings.
mlr.press/v211/guo23b.html.

[14] Pixar Animation Studios, OpenUSD Documentation (Universal Scene Des-
cription), https://openusd.org/docs/, Zugriff am 20.09.2025, 2025.

[15] Open Robotics, Unified Robot Description Format (URDF) — XML Spezifi-
kation, https://wiki.ros.org/urdf/XML/model, Version vom 24.03.2023,
Zugriff am 20.09.2025, 2023.

[16] J. Collins, S. Chand, A. Vanderkop und D. Howard, “A review of physics
simulators for robotic applications,” IEEE Access, Jg. 9, S. 51 416–51 431,
2021, issn: 2169-3536. doi: 10 . 1109 / ACCESS . 2021 . 3068769. besucht
am 1. Sep. 2025. Adresse: https://ieeexplore.ieee.org/document/
9386154/.

[17] S. Anderson, “NSF/NIST/DOD workshop on using modeling and simulation
in robotics: Pre-workshop slides (2018),” 2018.

32

https://doi.org/10.1126/scirobotics.adi8022
https://doi.org/10.1126/scirobotics.adi8022
https://www.science.org/doi/10.1126/scirobotics.adi8022
https://www.science.org/doi/10.1126/scirobotics.adi8022
https://www.boosterobotics.com/booster-t1/
https://doi.org/10.11591/ijra.v12i4.pp405-411
https://doi.org/10.11591/ijra.v12i4.pp405-411
https://www.researchgate.net/publication/379231219_An_overview_of_emerging_trends_in_robotics_and_automation
https://www.researchgate.net/publication/379231219_An_overview_of_emerging_trends_in_robotics_and_automation
https://www.researchgate.net/publication/379231219_An_overview_of_emerging_trends_in_robotics_and_automation
https://doi.org/10.1073/pnas.1907856118
https://pmc.ncbi.nlm.nih.gov/articles/PMC7817170/
https://proceedings.mlr.press/v211/guo23b.html
https://proceedings.mlr.press/v211/guo23b.html
https://openusd.org/docs/
https://wiki.ros.org/urdf/XML/model
https://doi.org/10.1109/ACCESS.2021.3068769
https://ieeexplore.ieee.org/document/9386154/
https://ieeexplore.ieee.org/document/9386154/

Literatur Literatur

[18] C. K. Liu und D. Negrut, “The role of physics-based simulators in robotics,”
Annual Review of Control, Robotics, and Autonomous Systems, Jg. 4, S. 35–
58, Volume 4, 2021 3. Mai 2021, Publisher: Annual Reviews, issn: 2573-5144.
doi: 10.1146/annurev-control-072220-093055. besucht am 1. Sep. 2025.
Adresse: https://www.annualreviews.org/content/journals/10.1146/
annurev-control-072220-093055.

[19] R. S. Sutton und A. G. Barto, “Reinforcement learning: An introduction,”

[20] P. Ladosz, L. Weng, M. Kim und H. Oh, “Exploration in Deep Reinforcement
Learning: A Survey,” Information Fusion, Jg. 85, S. 1–22, Sep. 2022, issn:
15662535. doi: 10.1016/j.inffus.2022.03.003. arXiv: 2205.00824[cs].
besucht am 19. Sep. 2025. Adresse: http://arxiv.org/abs/2205.00824.

[21] J. Kober, J. A. Bagnell und J. Peters, “Reinforcement learning in robotics:
A survey,”

[22] S. Levine, C. Finn, T. Darrell und P. Abbeel, “End-to-end training of deep
visuomotor policies,”

[23] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, 1994, isbn: 978-0471727828.

[24] C. J. C. H. Watkins und P. Dayan, “Q-learning,” Machine Learning, Jg. 8,
Nr. 3–4, S. 279–292, Mai 1992. doi: 10.1007/BF00992698. Adresse: https:
//link.springer.com/article/10.1007/BF00992698.

[25] T. P. Lillicrap u. a., “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015. arXiv: 1509.02971 [cs.LG]. Adres-
se: https://arxiv.org/abs/1509.02971.

[26] T. Haarnoja u. a., Soft Actor-Critic Algorithms and Applications, 29. Jan.
2019. doi: 10.48550/arXiv.1812.05905. arXiv: 1812.05905[cs]. besucht
am 1. Sep. 2025. Adresse: http://arxiv.org/abs/1812.05905.

[27] T. Haarnoja, A. Zhou, P. Abbeel und S. Levine, “Off-policy maximum entro-
py deep reinforcement learning with a stochastic actor,”

[28] D. Han, B. Mulyana, V. Stankovic und S. Cheng, “A survey on deep re-
inforcement learning algorithms for robotic manipulation,” Sensors, Jg. 23,
Nr. 7, S. 3762, Jan. 2023, Publisher: Multidisciplinary Digital Publishing In-
stitute, issn: 1424-8220. doi: 10.3390/s23073762. besucht am 1. Sep. 2025.
Adresse: https://www.mdpi.com/1424-8220/23/7/3762.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford und O. Klimov, Proximal
Policy Optimization Algorithms, 28. Aug. 2017. doi: 10 . 48550 / arXiv .
1707.06347. arXiv: 1707.06347[cs]. besucht am 1. Sep. 2025. Adresse:
http://arxiv.org/abs/1707.06347.

33

https://doi.org/10.1146/annurev-control-072220-093055
https://www.annualreviews.org/content/journals/10.1146/annurev-control-072220-093055
https://www.annualreviews.org/content/journals/10.1146/annurev-control-072220-093055
https://doi.org/10.1016/j.inffus.2022.03.003
https://arxiv.org/abs/2205.00824 [cs]
http://arxiv.org/abs/2205.00824
https://doi.org/10.1007/BF00992698
https://link.springer.com/article/10.1007/BF00992698
https://link.springer.com/article/10.1007/BF00992698
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.48550/arXiv.1812.05905
https://arxiv.org/abs/1812.05905 [cs]
http://arxiv.org/abs/1812.05905
https://doi.org/10.3390/s23073762
https://www.mdpi.com/1424-8220/23/7/3762
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://arxiv.org/abs/1707.06347 [cs]
http://arxiv.org/abs/1707.06347

Literatur Literatur

[30] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba und P. Abbeel, “Asym-
metric actor critic for image-based robot learning,” in Robotics: Science and
Systems XIV, Robotics: Science und Systems Foundation, 26. Juni 2018,
isbn: 978-0-9923747-4-7. doi: 10.15607/RSS.2018.XIV.008. besucht am
8. Sep. 2025. Adresse: http://www.roboticsproceedings.org/rss14/
p08.pdf.

[31] OpenAI u. a., Learning Dexterous In-Hand Manipulation, 18. Jan. 2019. doi:
10.48550/arXiv.1808.00177. arXiv: 1808.00177[cs]. besucht am 2. Sep.
2025. Adresse: http://arxiv.org/abs/1808.00177.

[32] M. Andrychowicz u. a., “Learning Dexterous In-Hand Manipulation,” The
International Journal of Robotics Research, Jg. 39, Nr. 1, S. 3–20, 2020. doi:
10.1177/0278364919887447. Adresse: https://matthiasplappert.com/
publications/2020_OpenAI_Dexterous-Manipulation_IJRR.pdf.

[33] N. Rudin, D. Hoeller, P. Reist und M. Hutter, “Learning to Walk in Minutes
Using Massively Parallel Deep Reinforcement Learning,” in Proceedings of
the 5th Conference on Robot Learning (CoRL), Ser. Proceedings of Machine
Learning Research, Bd. 164, PMLR, 2022, S. 91–100. Adresse: https://
proceedings.mlr.press/v164/rudin22a.html.

[34] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger und J. Peters, “Robot
Learning From Randomized Simulations: A Review,” Frontiers in Robotics
and AI, Jg. 9, 11. Apr. 2022, Publisher: Frontiers, issn: 2296-9144. doi:
10.3389/frobt.2022.799893. besucht am 3. Okt. 2024. Adresse: https:
//www.frontiersin.org/journals/robotics-and-ai/articles/10.

3389/frobt.2022.799893/full.

[35] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba und P. Abbeel, Domain
Randomization for Transferring Deep Neural Networks from Simulation to
the Real World, 20. März 2017. doi: 10.48550/arXiv.1703.06907. arXiv:
1703.06907[cs]. besucht am 1. Sep. 2025. Adresse: http://arxiv.org/
abs/1703.06907.

[36] J. Collins, D. Howard und J. Leitner, “Quantifying the Reality Gap in Ro-
botic Manipulation Tasks,” in 2019 International Conference on Robotics
and Automation (ICRA), ISSN: 2577-087X, Mai 2019, S. 6706–6712. doi:
10.1109/ICRA.2019.8793591. besucht am 14. Okt. 2024. Adresse: https:
//ieeexplore.ieee.org/document/8793591.

[37] M. Tiboni, A. Borboni, F. Vérité, C. Bregoli und C. Amici, “Sensors and
Actuation Technologies in Exoskeletons: A Review,” Sensors (Basel, Swit-
zerland), Jg. 22, Nr. 3, S. 884, 24. Jan. 2022, issn: 1424-8220. doi: 10.3390/
s22030884. besucht am 3. Sep. 2025. Adresse: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC8839165/.

34

https://doi.org/10.15607/RSS.2018.XIV.008
http://www.roboticsproceedings.org/rss14/p08.pdf
http://www.roboticsproceedings.org/rss14/p08.pdf
https://doi.org/10.48550/arXiv.1808.00177
https://arxiv.org/abs/1808.00177 [cs]
http://arxiv.org/abs/1808.00177
https://doi.org/10.1177/0278364919887447
https://matthiasplappert.com/publications/2020_OpenAI_Dexterous-Manipulation_IJRR.pdf
https://matthiasplappert.com/publications/2020_OpenAI_Dexterous-Manipulation_IJRR.pdf
https://proceedings.mlr.press/v164/rudin22a.html
https://proceedings.mlr.press/v164/rudin22a.html
https://doi.org/10.3389/frobt.2022.799893
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.799893/full
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.799893/full
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.799893/full
https://doi.org/10.48550/arXiv.1703.06907
https://arxiv.org/abs/1703.06907 [cs]
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1703.06907
https://doi.org/10.1109/ICRA.2019.8793591
https://ieeexplore.ieee.org/document/8793591
https://ieeexplore.ieee.org/document/8793591
https://doi.org/10.3390/s22030884
https://doi.org/10.3390/s22030884
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839165/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839165/

Literatur Literatur

[38] Y. Wang, P. Chen, X. Han, F. Wu und M. Zhao, “Booster Gym: An End-to-
End Reinforcement Learning Framework for Humanoid Robot Locomotion,”
arXiv preprint arXiv:2506.15132, 2025.

[39] V. Makoviychuk u. a., Isaac Gym: High Performance GPU-Based Physics
Simulation For Robot Learning, 25. Aug. 2021. doi: 10.48550/arXiv.2108.
10470. arXiv: 2108.10470[cs]. besucht am 3. Sep. 2025. Adresse: http:
//arxiv.org/abs/2108.10470.

[40] L. Biewald, Experiment Tracking with Weights & Biases, https://www.
wandb.com/, Software available from wandb.com, 2020.

[41] W. Zhao, J. P. Queralta und T. Westerlund, “Sim-to-Real Transfer in Deep
Reinforcement Learning for Robotics: a Survey,” CoRR, Jg. abs/2009.13303,
2020. arXiv: 2009.13303. Adresse: https://arxiv.org/abs/2009.13303.

[42] E. Ratner, D. Hadfield-Menell und A. D. Dragan, “Simplifying Reward De-
sign through Divide-and-Conquer,” CoRR, Jg. abs/1806.02501, 2018. arXiv:
1806.02501. Adresse: http://arxiv.org/abs/1806.02501.

[43] C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Mart́ın-Mart́ın und P.
Stone, Deep Reinforcement Learning for Robotics: A Survey of Real-World
Successes, 2024. arXiv: 2408.03539 [cs.RO]. Adresse: https://arxiv.
org/abs/2408.03539.

35

https://doi.org/10.48550/arXiv.2108.10470
https://doi.org/10.48550/arXiv.2108.10470
https://arxiv.org/abs/2108.10470 [cs]
http://arxiv.org/abs/2108.10470
http://arxiv.org/abs/2108.10470
https://www.wandb.com/
https://www.wandb.com/
https://arxiv.org/abs/2009.13303
https://arxiv.org/abs/2009.13303
https://arxiv.org/abs/1806.02501
http://arxiv.org/abs/1806.02501
https://arxiv.org/abs/2408.03539
https://arxiv.org/abs/2408.03539
https://arxiv.org/abs/2408.03539

A ZUSATZMATERIAL

A Zusatzmaterial

Tabelle A.1: Beobachtungen des Actors (normalisiert und ggf. verrauscht gemäß
Konfiguration).

Größe Dim. Bezugssystem Kurzbeschreibung

Projizierte Gravitation
gbase

3 Actor Orientierungs-Surrogat: Gravi-
tationsvektor in Actor-KS; op-
tional Rauschen & Normierung.

Actorkörper-
Winkelgeschw. ωbase

3 Actor Aktuelle Winkelgeschwindig-
keit; optional Rauschen &
Normierung.

Relative Ballposition
(x, y), pxyball/base

2 Actor Ballposition relativ zur Actor
(nur x, y); optional Rauschen &
Normierung.

Gelenkwinkel-Offset
q− q0

23 Gelenkraum Abweichung zu Default-
Winkeln; optional Rauschen &
Normierung.

Gelenkgeschwindigkeiten
q̇

23 Gelenkraum Aktuelle DOF-
Geschwindigkeiten; optional
Rauschen & Normierung.

Aktionen a 12 — Letzte Aktor-Kommandos (be-
reits auf ±aclip begrenzt).

36

A ZUSATZMATERIAL

Tabelle A.2: Privilegierte Beobachtungen (nur Critic).

Größe Dim. Bezugssystem Kurzbeschreibung

Actor-COM-Offsets &
Massenskalierung

4 — Randomisierungsgrößen für Ac-
tor (COM x, y, z und Masse).

Actor-Linear-
geschwindigkeit vbase

3 Actor Aktuelle lineare Geschwindig-
keit; optional Rauschen & Nor-
mierung.

Actorhöhe h über
Terrain

1 Welt z-Abstand der Actor zur Ter-
rainhöhe; optional Rauschen &
Normierung.

Ball-Linearge-
schwindigkeit (x, y)

2 Welt Ballgeschwindigkeit (nur x, y);
roh (ohne Rauschen/Normie-
rung).

Fußposition links (x, y) 2 Welt Position des linken Fußes in
x, y; roh.

Fußposition rechts (x, y) 2 Welt Position des rechten Fußes in
x, y; roh.

Externe Schubkräfte
fpush

3 lokaler Actor Auf die Actor wirkende Kräfte;
mit Normierung.

Externe Schubmomente
τ push

3 lokaler Actor Auf die Actor wirkende Mo-
mente; mit Normierung.

37

A
Z
U
S
A
T
Z
M
A
T
E
R
IA

L

Tabelle A.3: Domain Randomization: Verteilungen/Intervalle, Anwendungsmomente und Erläuterungen (∆t =
0.02 s).

Randomisierung Formel Anwendung Kurzbeschreibung

DOF-Startwinkel q0 ← qdef +N (0, σ2), σ∈
[0, 0.05]

Bei jedem Reset q0 sind die initialen Gelenkwin-
kel (rad), qdef die Default-Pose;
σ ist die Standardabweichung
des additiven Gauß-Rauschens.

Basis-Yaw ψ0 ← 0 +N (0, σ2), σ∈ [0, 0.1] Bei jedem Reset ψ0 ist der anfängliche Gierwin-
kel um die Vertikalachse (rad);
σ bestimmt die Streuung.

Basis-Linear-
geschwindigkeit x, y

v0,xy ← 0+N (0, σ2), σ∈
[0, 0.1]

Bei jedem Reset v0,xy ∈ R2 ist die anfängliche
planare Lineargeschwindigkeit
(m/s); σ ist die Rauschstärke.

Ball-Startposition relativ
vor Roboter

dx ∼ U [0.25, 0.4], dy ∼
U [0, 0.2]

Bei jedem Reset dx (Vorwärts-) und dy (Seit-
)Offset relativ zum Roboter;
Platzierung vor dem linken Fuß
im Roboter-KS, vertikal auf Bo-
denniveau plus Ballradius r =
0,05m.

Aktuationsverzögerung δ ∈ {0, . . . , 9} · 0.002 s Bei jedem Reset δ ist die Verzögerung der Ak-
tionsweitergabe (0–9 Physik-
Substeps ⇒ 0–0.018 s).

Fortsetzung auf der nächsten Seite

38

A
Z
U
S
A
T
Z
M
A
T
E
R
IA

L
Fortsetzung von Tab. A.3

Randomisierung Formel Anwendung Kurzbeschreibung

Beobachtungsrauschen:
Gravitation

g← g+N (0, σ2), σ∈ [0, 0.01] Jeder
Simulationsschritt

g ∈ R3 ist der (projizierte) Gra-
vitationsvektor; σ ist die Stan-
dardabweichung des additiven
Rauschens.

Beobachtungsrauschen:
Basis-Lin./Ang.-Geschw.

v← v+N (0, σ2), σ∈ [0, 0.05];
ω ← ω +N (0, σ2), σ∈ [0, 0.1]

Jeder
Simulationsschritt

v ∈ R3 ist die lineare Ge-
schwindigkeit (m/s), ω ∈ R3

die Winkelgeschwindigkeit (ra-
d/s); σ gibt die Rauschstärke an.

Beobachtungsrauschen:
Höhe

h← h+N (0, σ2), σ∈ [0, 0.02] Jeder
Simulationsschritt

h ist die Basis-Höhe über Ter-
rain (m); σ ist die Standardab-
weichung des Rauschens.

Beobachtungsrauschen:
Ball-Relativposition (2D)

pxy ← pxy +N (0, σ2), σ∈
[0, 0.01]

Jeder
Simulationsschritt

pxy = (x, y) ist die Ballpo-
sition relativ zum Roboter in
der Ebene (m); σ bestimmt die
Rauschstärke.

Beobachtungsrauschen:
DOF-Offsets/Geschw.

∆q← ∆q+N (0, σ2), σ∈
[0, 0.01];
q̇← q̇+N (0, σ2), σ∈ [0, 0.1]

Jeder
Simulationsschritt

∆q sind Gelenk-Offsets zur
Default-Pose (rad), q̇ Gelenkge-
schwindigkeiten (rad/s); σ sind
die jeweiligen Rauschstärken.

PD-Gains (pro DOF) Kp ← Kp · s, s∼
U [0.95, 1.05]; Kd ←
Kd · s′, s′∼U [0.95, 1.05]

Bei Initialisierung Kp Proportional-Steifigkeit,
Kd Dämpfung; s, s′ sind un-
abhängige uniforme Skalenfak-
toren.

Fortsetzung auf der nächsten Seite

39

A
Z
U
S
A
T
Z
M
A
T
E
R
IA

L

Fortsetzung von Tab. A.3

Randomisierung Formel Anwendung Kurzbeschreibung

DOF-Reibung (pro
DOF)

µ← µ+ u, u∼U [0, 2.0] Bei Initialisierung µ ist die (trockene) Gelenkrei-
bung (dimensionslos); u ist eine
uniforme additive Komponente.

Fußkontakt-
Eigenschaften (Shapes)

µ ∼ U [0.1, 2.0], c ∼
U [0.5, 1.5], e ∼ U [0.1, 0.9]

Bei Initialisierung µ Reibungskoeffizient, c effekti-
ve Compliance/Weichheit, e Re-
stitutionskoeffizient (Elastizität
beim Stoß).

Basiskörper:
Schwerpunkt & Masse

c←
c+ U([−0.1, 0.1]3); m←
m · s, s∼U [0.8, 1.2]

Bei Initialisierung c ∈ R3 Schwerpunktlage (m) des
Basiskörpers; m dessen Masse; s
positiver Skalierungsfaktor.

Andere Körper:
Schwerpunkt & Masse

ci ← ci +
U([−0.005, 0.005]3); mi ←
mi · s, s∼U [0.98, 1.02]

Bei Initialisierung ci (m) und mi sind Schwer-
punkt und Masse jedes nicht-
basalen Körpers; kleinere Ampli-
tuden als beim Basiskörper.

40

A
Z
U
S
A
T
Z
M
A
T
E
R
IA

L
Tabelle A.4: Belohnungsterme mit Skalierung der Finetuningiterationen (FT). Negative Skalen wirken als Bestra-

fungen.
”
—“ = nicht vorhanden. Werte in Klammern entsprechen der Skalierung in Phase 2 (Schuss)

Name Formel Base FT Zit-
tern

FT
Warten

Beschreibung

Ballgeschwindigkeit
in Zielrichtung

r = clip
(
(vB ·

d̂) e−troll/τ , 0, vmax

) 10 5 10 vB: Ballgeschwindigkeit; d̂:
Einheitsvektor Ball→Ziel;
troll: Zeit seit Rollbeginn; τ :
Zerfallszeit; vmax: Kappung.
Hauptterm für

”
starken

Schuss“.
Ballbeschleunigung
in Zielrichtung

r =
rmax tanh

(
max(0, ax −

|ay|)/s
) 0.25 0.15 0.25 ax, ay: Ballbeschleunigungs-

Komponenten
(vorwärts/lateral); s: Skala;
rmax: Kappung.

Annäherung
Fuß–Ball (Ball ruht)

r =
clip

(
exp(−dFB/σprox)

, 0, rmax

) 10
(0)

10
(0)

10
(0)

dFB: kleinster Fuß–Ball-
Abstand; σprox: Nähe-Skala;
rmax: Obergrenze. Inaktiv in
Schussphase

Körperausrichtung
für Schuss

r = clip
(
exp

(
(cos θziel −

1)/σ
)
, 0, rmax

) 1 1 1 θziel: Winkel zw.
Vorwärtsrichtung und Ziel;
σ: Empfindlichkeit; rmax:
Kappung.

Überleben r = 1 1 0.5 0.25
(0.5)

Konstante Belohnung pro
Schritt.

Fortsetzung auf der nächsten Seite

41

A
Z
U
S
A
T
Z
M
A
T
E
R
IA

L

Name Formel Base FT Zit-
tern

FT
Warten

Beschreibung

Warten r =
(
t
T

)2
— — −1

(0)
t: vergangene Zeit; T : Re-
ferenz (Skalierung durch

”
Episode-Progress-Faktor“).
Inaktive während Schusspha-
se.

Tracking lin.
Geschw. (x)

r = exp
(
− v2x/σ

)
1 1 1 vx: Vorwärtsgeschwindigkeit

des Oberkörpers; σ: Breite
der Gauß-Glättung. Belohnt
kleine |vx|.

Tracking lin.
Geschw. (y)

r = exp
(
− v2y/σ

)
1 1 1 vy: Seitwärtsgeschwindigkeit

des Oberkörpers; σ: Breite der
Gauß-Glättung.

Tracking rot.
Geschw. (yaw)

r = exp
(
− ω2

z/σ
)

0.25 0.25 0.25 ωz: Yaw-
Winkelgeschwindigkeit des
Oberkörpers; σ: Breite.
Belohnt kleine |ωz|.

Oberkörperhöhe r = (h− h⋆)2 −200 −200 −200 h: Oberkörperhöhe; h⋆ =
0,68m Zielhöhe. Quadratische
Abweichungsstrafe.

Orientierung
(Kippung)

r = g2x + g2y −20 −20 −20 gx, gy: Anteile des Gravita-
tionsvektors im Körper-KS
(x/y). Bestraft Schräglage.

Fortsetzung auf der nächsten Seite

42

A
Z
U
S
A
T
Z
M
A
T
E
R
IA

L
Name Formel Base FT Zit-

tern
FT
Warten

Beschreibung

Drehmomente r =
∑

i τ
2
i −1·10−4 −3·10−4 −2·10−4 τi: Motordrehmoment im

DOF i; glättet energiereiche
Befehle.

Drehmoment-

”
Müdigkeit“

r =∑
imin

(
(|τi|/τmax

i)2, 1
) −0.01 −0.01 −0.01 τmax

i : zulässiges Motormaxi-
mum; bestraft Nähe zum Li-
mit (Sättigung bei 1).

Leistung r =
∑

imax(τi q̇i, 0) −0.001
(-0.002)

−0.002 −0.002 q̇i: Gelenkgeschwindigkeit.
Bestraft positive (eingespeis-
te) Leistung.

Lin. Geschw. z r = v2z −1.5 −1.5 −1.5 vz: Vertikalgeschwindigkeit
des Oberkörpers.

Rot. Geschw. x, y r = ω2
x + ω2

y −0.1 −0.1 −0.1 ωx, ωy: Roll-/Pitch-
Winkelgeschwindigkeit.

Gelenkgeschwindigkeit r =
∑

i q̇
2
i −3·10−4 −3·10−4 −3·10−4 q̇i: DOF-Geschwindigkeit;

dämpft schnelle Bewegungen.

Gelenkbeschleunigung r =
∑

i

(
(q̇i − q̇alti)/∆t

)2 −1·10−7 −1·10−7 −1·10−7 q̇alti : Vorwert; ∆t: Zeitschritt.
Dämpft Ruck.

Basis-
Beschleunigung

r =
∥∥(vbase − valt)/∆t

∥∥2 −1·10−5 −1·10−5 −1·10−5 vbase: lineare Oberkörper-
Geschwindigkeit; valt: Vor-
wert.

Aktionsrate r =
∑

(at − at−1)
2 −0.25

(-0.5)
−1.5
(-0.5)

−1.5 at: Aktionsvektor im Schritt t;
glättet Kommandos.

Fortsetzung auf der nächsten Seite

43

A
Z
U
S
A
T
Z
M
A
T
E
R
IA

L

Name Formel Base FT Zit-
tern

FT
Warten

Beschreibung

Gelenkpositions-
Limits

r =
∑

⊮{|qi| > Limit} −1 −1 −1 qi: Gelenkwinkel; Indikator-
strafe bei Überschreitung wei-
cher Grenzen.

Gelenkgeschw.-
Limits

r =
∑

max(|q̇i|− q̇max
i , 0) 0 0 0 q̇max

i : erlaubte DOF-
Geschwindigkeit; hier inaktiv.

Drehmoment-Limits r =
∑

max(|τi|−τmax
i , 0) 0 0 0 τmax

i : Drehmomentgrenze;
hier inaktiv.

Kollisionen r =∑
⊮{Kontakt verb. Teile}

−1 −1 −1 Indikatorstrafe für Kontakte
auf definierten Robotorteilen
(Rumpf/Gliedmaßen).

Fuß-Schlupf (bei
Kontakt)

r =
∑∥∥pFuß−palt

Fuß

∆t

∥∥2 −0.2 −1 −1 pFuß: Fußposition; reduziert
Gleiten am Boden.

Fuß-Vertikalgeschw. r =
∑
v2z,Fuß 0 0 0 vz,Fuß: vertikale Fußgeschwin-

digkeit; hier inaktiv.
Fuß-Rollwinkel r =

∑
ϕ2
roll −0.3 −0.3 −0.3 ϕroll: Rollwinkel der Füße re-

lativ Boden.

Fuß-Yaw-Differenz r =
(
wrap(ψR − ψL)

)2 −1 −3 −3 ψL/R: Yaw-Ausrichtung
link/rechts; wrap: Winkel in
(−π, π].

Fuß-Yaw-Mittel vs.
Körper

r =(
wrap(ψBody − ψL+ψR

2
)
)2 −1 −3 −3 ψBody: Yaw des Oberkörpers;

bestraft verdrehte Fußstel-
lung.

Fortsetzung auf der nächsten Seite

44

A
Z
U
S
A
T
Z
M
A
T
E
R
IA

L
Name Formel Base FT Zit-

tern
FT
Warten

Beschreibung

Körperwinkel
(Pitch/Roll)

r = 1
0.1+(ϕ2+θ2)2

− 1 0.25 0.1 0.1 ϕ: Roll; θ: Pitch des
Oberkörpers; kleine Win-
kel werden belohnt.

45

A ZUSATZMATERIAL

Tabelle A.6: Optimizer- und Trainingsparameter

Größe Wert Erläuterung

Optimierungsverfahren Adam Standard-Optimizer für sto-
chastische Gradientenverfahren
in kontinuierlichen Steuerauf-
gaben.

Lernrate (Start) 1× 10−5 Anfangswert für die Schritt-
weite der Parameteraktualisie-
rung.

LR-Anpassung nach
KL-Abweichung

Faktor 1.5 um
Ziel-KL 0.01

Erhöht/senkt die Lernra-
te, wenn die mittlere KL-
Divergenz deutlich unter/über
dem Ziel liegt (stabilisiert
Policy-Updates).

Gradienten-Clipping (global) 1.0 (L2-Norm) Begrenzung der Gradien-
tenlänge zur Vermeidung
numerischer Instabilitäten und
Explodierender Gradienten.

Entropie-Gewichtung −0.01 Negativer Koeffizient im Ver-
lust: fördert höhere Entropie
der Policy (explorativere Aktio-
nen).

Begrenzungs-Term für
Mittelwerte

aktiv (auf
[−1, 1])

Quadratische Strafe, falls
die Aktionsmittelwerte den
zulässigen Bereich verlassen;
verhindert Sättigung außerhalb
des Intervalls.

Wertfunktions-Verlust MSE Quadratischer Fehler zwischen
geschätztem Wert und Ziel-
Rückgabe.

Discountfaktor 0.995 Gewichtet zukünftige Beloh-
nungen; nahe 1 für langfristige
Ziele.

GAE-Glättung (λ) 0.95 Bias–Varianz-Abwägung in der
Vorteilsschätzung (Generalized
Advantage Estimation).

Fortsetzung auf der nächsten Seite

46

A ZUSATZMATERIAL

Größe Wert Erläuterung

Normierung der Vorteile z-Score Zentrierung und Skalierung der
Vorteile je Batch (Numerik-
stabiler PPO-Update).

Rollout-Länge 24 Schritte
(≈ 0.48 s)

Anzahl Schritte pro Sammlung
vor einem Update; Zeit basie-
rend auf 0.02 s pro Schritt.

Optimierungsdurchläufe pro
Update

20
Mini-Epochen

Wie oft über denselben
Rollout-Batch iteriert wird
(Datenwiederverwendung).

Speicherintervall alle 100
Updates

Periodisches Sichern von
Checkpoints/Logs.

Maximale Updates 10,000 Obergrenze für die Anzahl
Training-Iterationen.

Tabelle A.7: Simulationsparameter für den Schuss-Task in Isaac Gym.

Parameter Wert Beschreibung

Physik-Zeitschritt (pro
Substep)

0.002 s Zeitinkrement, mit dem PhysX
die Dynamik integriert.

Aktualisierungsintervall der
Aktionen

10 Substeps So lange wird eine vom Ac-
tor gelieferte Aktion gehal-
ten, bevor die nächste an die
Tensor-API/PhysX weitergege-
ben wird (Action-Haltezeit).

Abgeleitet: Zeit pro
RL-Schritt

0.02 s Zeit zwischen zwei Policy-
Aktionen (Aktualisierungsin-
tervall × Physik-Zeitschritt).

Schwerkraft (Welt) (0, 0,−9.81)m/s2 Gravitationsbeschleunigung; Z-
Achse zeigt nach oben.

Physik-Engine / Solver PhysX (TGS) GPU-basierte Kollision und
Dynamik; TGS-Solver für
stabile Kontakte.

Solver-Iterationen Pos: 4, Vel: 1 Iterationszahlen zur Auflösung
von Positions- bzw. Geschwin-
digkeitsnebenbedingungen je
Schritt.

Fortsetzung auf der nächsten Seite

47

A ZUSATZMATERIAL

Parameter Wert Beschreibung

Kontaktparameter Kontakt-Offset
0.02m,
Rest-Offset 0m

Einstellungen für die Kontak-
tentstehung bzw. das

”
Rasten“

von Kontakten.
Gelenkregelung (PD) Kp =

{200, 200, 50},
Kd = {5, 5, 1}

Proportional- und
Dämpfungsanteile für
Hüfte/Knie/Sprunggelenk;
bestimmen die resultierenden
Stellmomente.

Skalierung der Aktionen 1.0 Faktor, mit dem die vom Actor
ausgegebenen Kommandos in
Stellgrößen/Drehmomente um-
gesetzt werden.

Bodenmodell
(Reibung/Elastizität)

µ = 1.0, e = 0 Reibung und
Rückprallelastizität der ebenen
Umgebung.

Parallelisierte Umgebungen 4096 Anzahl gleichzeitig simulierter,
physikalisch getrennter Umge-
bungen (kein Austausch zwi-
schen ihnen).

Beobachtungen des Actors 44 Länge des Beobachtungsvek-
tors, der der Lernumgebung pro
Schritt bereitgestellt wird.

Zusatzbeobachtungen (nur
Wertfunktion)

20 Privilegierte Größen, die aus-
schließlich der Critic verwen-
det.

Aktionsraum
(kontinuierlich)

12 Anzahl kontinuierlicher Stell-
größen, die der Actor ausgibt.

Startpose des Roboters Höhe ≈ 0.72m Ausgangslage des Basiskörpers;
weitere Startgrößen werden
beim Zurücksetzen einer
Umgebung zufällig erzeugt
(Domain Randomization).

48

A ZUSATZMATERIAL

Tabelle A.5: Abbruchbedingungen mit formaler Definition und Kurzbeschreibung
(∆t = 0.02 s).

Bedingung Formel Kurzbeschreibung

Sturz / niedrige
Rumpfhöhe

h := zbase − hterrain <
0.45m

Abbruch, wenn die
Rumpfhöhe h unter
0,45m fällt. Dabei ist
zbase die Höhe des Actor-
Basiskorpers (Oberkörper)
in Welt-z und hterrain die
Terrainoberfläche an der
Standposition.

Zu hohe
Basisgeschwindigkeit

s := ∥vbase∥2 + ∥ωbase∥2 >
50

Abbruch, wenn das kom-
binierte Geschwindigkeits-
maß s den Grenzwert 50
überschreitet. Hierbei ist
vbase die lineare Geschwin-
digkeit des Oberkörpers
und ωbase dessen Winkelge-
schwindigkeit.

Erfolgsabbruch: Ball
rollt lang genug

∀τ ∈ [0, 2 s] :
vball,x(t− τ) > 0.1m/s

Abbruch im Erfolgsfall:
Die Ballgeschwindigkeit in
x-Richtung vball,x bleibt
durchgängig länger als 2 s
über 0,1m/s. t ist die aktu-
elle Zeit; dies entspricht ca.
100 Steps bei ∆t = 0.02 s.

Ball zu lange still ∀τ ∈ [0, 2 s] :
∥vball(t− τ)∥ ≤ 0.1m/s

Abbruch, wenn der Ball
mindestens 2 s praktisch
stillsteht. vball ∈ R3 ist
die Ballgeschwindigkeit
in Weltkoordinaten, und
0,1m/s definiert den

”
still“-

Schwellenwert (≈ 100
Steps).

Ball zu lange in
Bewegung

∀τ ∈ [0, 5 s] :
∥vball(t− τ)∥ > 0.1m/s

Abbruch, wenn der Ball
länger als 5 s rollt. vball

wie oben; 0,1m/s ist der
Bewegungs-Schwellenwert
(≈ 250 Steps).

Episoden-Timeout t ≥ 7 s (bzw. Nsteps ≥
⌈7/∆t⌉ = 350)

Abbruch nach Erreichen der
maximalen Episodendauer.
t ist die verstrichene Epi-
sodenzeit, Nsteps die Anzahl
Simulationsschritte (∆t =
0.02 s⇒ 350 Steps).

49

A ZUSATZMATERIAL

Tabelle A.8: Schichtweiser Aufbau der Actor–Critic-Architektur. nobs = Anzahl
Beobachtungen, npriv = Anzahl privilegierter Beobachtungen, nact =
Anzahl Aktionen.

Netz Schicht Typ Eingabe Ausgabe Bemerkung

Critic 1 Linear nobs + npriv 256 Eingabe ist[
obs, priv

]
2 ELU 256 256
3 Linear 256 256
4 ELU 256 256
5 Linear 256 128
6 ELU 128 128
7 Linear 128 1 Skalarer Wert

V (s)

Actor 1 Linear nobs 256
2 ELU 256 256
3 Linear 256 128
4 ELU 128 128
5 Linear 128 128
6 ELU 128 128
7 Linear 128 nact Ausgabematrix

der Mittelwerte
µ ∈ Rnact

8 (Parameter) – nact Trainierbarer
Vektor
logσ ∈ Rnact ,
initialisiert
mit −2.0;
σ = exp(logσ)

9 Policy – – Stochastische Po-
litik: π(a | s) =
N
(
µ(s), diag(σ2)

)

50

A ZUSATZMATERIAL

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit mit dem Titel
”
Von der Simu-

lation aufs Spielfeld: Reinforcement Learning für dynamische Schussbewegungen
im Roboterfußball“ selbstständig und ohne unerlaubte Hilfe angefertigt habe. Alle
verwendeten Quellen sind kenntlich gemacht. Die Arbeit wurde in gleicher oder
ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt.

Leipzig, 22. September 2025
Felix Loos

51

	Kurzfassung
	Einleitung
	Zielsetzung

	Grundlagen
	Simulation
	Anforderungen an Simulationen
	Funktionsweise von Simulationen

	Reinforcement Learning
	Reinforcement Learning für Verhalten von Robotern
	Reinforcement Learning Algorithmen
	Übertragung in die Realität

	Booster T1 Roboter
	Aufbau des Roboters

	Methodik
	Simulation
	Aufbau der Simulation
	Umgebung und Robotermodell
	Domain Randomization

	Training
	Ablauf des Trainigs
	Implementierung
	Trainingsüberwachung

	Lernsignale
	Belohungsdesign
	Evaluationsstrategien
	Abbruchbedingungen

	Sim-to-Real
	Set-up auf dem Roboter
	Sim-to-Real-Transfer

	Diskussion
	Fazit
	Ausblick
	Zusatzmaterial
	Eidesstattliche Erklärung

