HTWK Leipzig
Fakultat Informatik und Medien

Von der Simulation aufs Spielfeld:
Reinforcement Learning fiir dynamische
Schussbewegungen im Roboterfufiball

Bachelorarbeit
von Felix Loos

Studiengang: Informatik B.Sc.

Erstpriifer: Prof. Dr. rer. nat. Jens Wagner
Zweitpriifer: M. Sc. Tobias Jagla
Abgabedatum: 22. September 2025

Ort: Leipzig

Kurzfassung

Diese Arbeit befasst sich mit der Entwicklung einer Schussbewegung fiir einen
humanoiden Roboter mithilfe von Reinforcement Learning (RL). Im Gegensatz
zu klassischen Ansétzen mit fest vorgegebenen Motorsequenzen erlaubt RL ei-
ne dynamische Anpassung an verénderliche Umgebungen und férdert eine stabile
Ganzkorperkontrolle. Zu diesem Zweck wurde eine physikbasierte Simulation in
NVIDIA Isaac Gym auf Basis der Booster Gym fiir den humanoiden T1-Roboter
aufgebaut. Innerhalb dieser Umgebung wurde ein Belohnungsdesign entwickelt, das
dichte Hilfsbelohnungen zur Steuerung des Lernprozesses mit spérlichen Zielbeloh-
nungen kombiniert, um ein gezieltes Schussverhalten zu erlernen. Um den Reali-
ty Gap zu iiberbriicken, kamen Domain Randomization und gezieltes Finetuning
zum Einsatz. Die erlernte Strategie konnte erfolgreich ohne zusétzliches Training
in der realen Welt (Zero-Shot-Transfer) auf den Roboter iibertragen werden. Die
Ergebnisse zeigen, dass der Agent Schussbewegungen sowohl in der Simulation als
auch auf der echten Hardware ausfithren kann. Damit wird deutlich, dass RL in
Kombination mit einem geeigneten Belohnungsdesign und Sim-to-Real-Methoden
ein vielversprechender Ansatz fiir komplexe, dynamische Bewegungen humanoi-
der Roboter ist und eine Grundlage fiir weitere Fahigkeiten wie Dribbeln oder
Torwartverhalten bietet.

Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis
Kurzfassung |
1 Einleitung 1
1.0.1 Zielsetzung 1
2 Grundlagen 3
2.1 Simulationo 3
2.1.1 Anforderungen an Simulationen 3
2.1.2 Funktionsweise von Simulationen 4
2.2 Reinforcement Learning 4
2.2.1 Reinforcement Learning fiir Verhalten von Robotern. 6
2.2.2 Reinforcement Learning Algorithmen 8
2.2.3 Ubertragung in die Realitdt 9
2.3 Booster T1 Roboter. 10
2.3.1 Aufbau des Roboters L. 11
3 Methodik 13
3.1 Simulation 13
3.1.1 Aufbau der Simulation 13
3.1.2 Umgebung und Robotermodell 15
3.1.3 Domain Randomization 16
3.2 Trainingo 16
3.2.1 Ablauf des Trainigs 16
3.2.2 Implementierungo 17
3.2.3 Trainingsiiberwachung 18
3.3 Lernsignale 18
3.3.1 Belohungsdesign 19
3.3.2 Evaluationsstrategien L. 20
3.3.3 Abbruchbedingungen 24
3.4 Sim-to-Real 25
3.4.1 Set-up auf dem Roboter 25
3.4.2 Sim-to-Real-Transfer 25
4 Diskussion 27
5 Fazit 29
6 Ausblick 30

IT

Inhaltsverzeichnis Inhaltsverzeichnis

A Zusatzmaterial 36

Eidesstattliche Erkldrung 51

III

Abbildungsverzeichnis Abbildungsverzeichnis

Abbildungsverzeichnis

2.1
2.2
3.1
3.2
3.3
3.4
3.5
4.1

Booster T1 in der Laborumgebung. 11
Gelenk- und Segmentbezeichnungen des Booster T1 11
[saac Gym: Komponenten und Datenfluss 14
Vereinfachte Kollisionsformen im T1-Modell 15
Schuss-Task: Simulationsautbau 15
Beispielhafte Skalierungen von Belohnungen im Trainingsverlauf . . 22
Verlauf von ausgewéhlten Belohnungen wéihrend eines Schusses . . . 24
Schuss-Sequenzen: real vs. Simulation 27

IV

Tabellenverzeichnis Tabellenverzeichnis

Tabellenverzeichnis

4.1

Al
A2
A3

A4
A6
A7
A5
A8

Ergebnisse der Simulation des Schuss-Trainings 28
Beobachtungen des Actors 36
Privilegierte Beobachtungen (nur Critic). 37
Domain Randomization: Verteilungen/Intervalle, Anwendungsmo-

mente und Erlauterungeno 38
Belohnungsterme mit Skalierung der Finetuningiterationen 41
Optimizer- und Trainingsparameter 46
Simulationsparameter fiir den Schuss-Task in Isaac Gym. 47
Abbruchbedingungen 49
Schichtweiser Aufbau der Actor—Critic-Architektur 50

1 EINLEITUNG

1 Einleitung

Fuflball stellt ein besonders schwieriges Problem fiir Roboter dar [1]. In einer sich
kontinuierlich &ndernden Umgebung miissen prézise Ganzkorperbewegungen aus-
gefithrt werden. Eine anspruchsvolle und fiir das Spiel entscheidende Bewegung
ist ein gezielter Schuss, der neben Prézision auch Gleichgewicht und Ballgefiihl
erfordert.

Im klassischen Ansatz werden feste Bewegungsablidufe einprogrammiert, bei de-
nen die Motoren fixe Positionen in festgelegten zeitlichen Intervallen erreichen [2,
3]. Diese Sequenzen konnen allerdings nicht dynamisch auf Verdnderungen in der
Umgebung reagieren, was bedeutet, dass der Roboter wiahrend des Schusses leicht
durch Hindernisse oder andere Roboter umgestofien werden kann.

Um diese Limitationen zu umgehen, gibt es verschiedene Ansétze, die Stabi-
litdt und Exaktheit der programmierten Bewegung miteinander zu verhandeln [4].
Allerdings kommt auch dieser Ansatz an seine Grenzen, wenn mehr Dynamik ge-
fordert ist. Jeder neue Aspekt, wie Reagieren auf unterschiedliche Ballpositionen,
Ausfallschritte bei besonders starken Stéflen oder Anpassen des Ziels, benétigt
neue, unter Umstidnden aufwendige Implementierungen.

Maschinelle Lernverfahren sollen Abhilfe schaffen, indem sie komplexes dyna-
misches Verhalten in einer simulierten Umgebung weitgehend frei explorativ er-
mitteln, anstatt extern vorgegeben zu sein. Pionierprojekte fiir Spielfertigkeiten
im FuBball, wie Dribbeln [5], Torwartverhalten [6] oder SchieBen [7], haben viel-
versprechende erste Ergebnisse geliefert. Ambitioniertere Forschungsprojekte, die
statt einzelner Bewegungen ganze Verhaltensmuster und Strategien lernen, wurden
bereits erfolgreich in Simulationen [8] und mit echten Robotern [9] erprobt. Dabei
sind Ansétze fiir ein vollstdndiges Spielverhalten im Vergleich zu spezialisierten
Lernzielen sehr rechenintensiv und aufwendig in der Planung und Durchfiihrung.
Angesichts dessen betrachtet diese Arbeit nur das Erlernen einer einzelnen Bewe-
gung, was ebenfalls perspektivisch ermdoglicht, den Lernerfolg mit konkurrierenden
oder zukiinftigen Ansétzen leichter zu vergleichen.

Wenn sich die vielversprechenden Ansétze auch in Wettkampfumgebungen, wie
dem RoboCup, beweisen sollten, werden wir in Zukunft dynamischeren, menschen-
ahnlicheren und spannenderen Roboterfufiball sehen kénnen.

1.0.1 Zielsetzung

Ziel dieser Arbeit ist es, ein Schussverhalten fiir einen T1 Roboter von Booster
Robotics [10] zu entwickeln. Das Verhalten soll mit dem maschinellen Lernverfah-
ren, Reinforcement Learning, in einer Simulation trainiert und anschlieBend auf
den echten Roboter iibertragen werden. Es soll gezeigt werden, wie die Simulation
und der Trainingsprozess aufgebaut sein miissen, um eine direkte Ubertragung des

1 EINLEITUNG

gelernten Verhaltens aus der Simulation auf den echten Roboter zu gewéhrleisten.
Ein nachgelagertes Trainieren oder Adjustieren des Verhaltens mit echten Daten
wére somit nicht erforderlich. Im Mittelpunkt stehen das Belohnungsdesign, das
das Lernziel festlegt und Qualitét, wie Ubertragbarkeit des Verhaltens, maBgeblich
bestimmt, sowie die Evaluationsstrategien, mit denen dieses Design schrittweise er-
arbeitet wurde.

2 GRUNDLAGEN

2 Grundlagen

Um die Umsetzung dieser Arbeit nachvollziehbar zu machen, werden in diesem Ka-
pitel die notwendigen theoretischen und technischen Grundlagen erldutert. Zunéchst
wird auf die Rolle von Simulationsumgebungen eingegangen, die eine sichere und
effiziente Moglichkeit bieten, komplexe Bewegungen zu trainieren und zu testen.
Anschliefend wird das Reinforcement Learning vorgestellt, das als zentrales Lern-
verfahren dient, um das gewiinschte Verhalten des Roboters zu erlernen. Dabei
werden sowohl die grundlegenden Prinzipien als auch spezifische Algorithmen be-
schrieben, die sich fiir kontinuierliche Ganzkoérperbewegungen in der Robotik eig-
nen. Dariiber hinaus wird die Herausforderung des sogenannten Reality Gaps the-
matisiert, der beim Transfer von Strategien aus der Simulation in die reale Welt
auftritt. AbschlieBend wird der verwendete Roboter, der Booster T1, vorgestellt.
Seine Eigenschaften und technischen Spezifikationen bilden die Grundlage fiir das
Training, sowie die spétere Evaluierung auf der realen Hardware. Damit legt dieses
Kapitel das Fundament fiir die methodische Umsetzung, die im folgenden Kapitel
beschrieben wird.

2.1 Simulation

Im Gegensatz zum klassischen Ansatz setzen moderne Verfahren des maschinellen
Lernens auf die Arbeit in Simulationsumgebungen [11]. Dieses virtuelle Training
erlaubt die Erzeugung vielfaltiger, dynamischer Kontexte, die massenhafte Par-
allelisierung verschiedener Versuchsinstanzen und das Reduzieren von Risiken fiir
Mensch und Maschine. Bei entsprechender Rechenleistung bieten diese Ansétze
ein erhebliches Plus an Effizienz, Rigorositdt und Sicherheit und sind dabei be-
merkenswert giinstig [12].

2.1.1 Anforderungen an Simulationen

Zentral ist eine realistische Physik-Engine. Diese muss Bewegungen von Koérpern
unter Kréften, wie Gravitation und Drehmomenten, auf Gelenken moglichst genau
simulieren konnen. Speziell fiir das Simulieren der Robotermodelle ist eine genaue
Rigid-Body-Dynamik nétig. Diese berechnet das Verhalten von Objekten unter
Krafteinwirkung, die iiber Gelenken miteinander verbunden sind. Zusétzlich sollten
Kollisionen und Reibungen von verschiedenen Objekten untereinander moglichst
realistisch berechnet werden [13]. Ebenso wichtig ist die Moglichkeit, mit der Si-
mulation detaillierte, virtuelle Umgebungen zu erzeugen, welche realistische Ober-
flacheneigenschaften und Lichtbedingungen beinhalten. Um vordefinierte Roboter-
modelle in die Umgebungen zu laden, ist es wichtig, dass géngige Modellformate

2.2 Reinforcement Learning 2 GRUNDLAGEN

wie Universal Scene Description (USD) [14] oder Unified Robot Description For-
mat (URDF) [15] unterstiitzt werden. Des Weiteren miissen Daten von Kameras,
Kraftsensoren und Inertial Measurement Units (IMU) ! realistisch gerendert bzw.
generiert werden konnen. Zusammenfassend ldsst sich sagen, dass eine passende
Simulation fiir das Training von Bewegungen fiir Roboter einen digitalen Zwilling
sowohl der physischen Plattform als auch der entsprechenden Umgebung schaffen
muss. Dabei gilt: Eine authentischere Simulation erzielt realistischere Ergebnisse

16].

2.1.2 Funktionsweise von Simulationen

Zu Beginn einer Simulation wird eine virtuelle Umgebung erzeugt, in die die Ro-
botermodelle geladen werden. AnschlieBend berechnet die Physik-Engine in dis-
kreten Zeitschritten die zukiinftigen Zustédnde. Dafiir werden die Positionen und
Geschwindigkeiten aller Objekte mit internen Kréften wie Motordrehmomenten
und mit externen Kriften wie Schwerkraft oder Kontaktkraften verrechnet. Nach
jedem Berechnungsschritt werden Sensordaten aus den Zustdnden generiert und
genutzt, um eine Aktion zu berechnen. Bei diesen Aktionen handelt es sich um Mo-
torkréifte, die beim néchsten Berechnungsschritt umgesetzt werden. Je realistischer
jeder der einzelnen Schritte ist, desto realistischer ist auch die gesamte Simulation
(17, 18].

2.2 Reinforcement Learning

Reinforcement Learning wird in der Literatur als eigenstdndiges Lernparadigma
zwischen Supervised und Unsupervised Learning beschrieben. Es basiert nicht auf
direkter Beschriftung von Daten, sondern auf verzogertem Feedback, das iiber
eine Belohnungsfunktion vermittelt wird [19]. Dabei wird durch Ausprobieren und
automatisiertes Bewerten gelernt.

Im Reinforcement Learning interagiert ein Agent mit einer Umgebung. Der Agent
wahlt Aktionen, die den Zustand der Umgebung verédndern, und erhélt dafiir Be-
lohnungen. Ziel ist es, eine Strategie zu lernen, die den erwarteten langfristigen
Gesamtertrag maximiert.

Der Zustandsraum umfasst alle moglichen Zustédnde, die iiber Aktionen erreich-
bar sind. Ein Aktionsraum umfasst alle moglichen Aktionen, die dem Agenten zur
Verfiigung stehen. Die Belohnungsfunktion R weist Zustdnden (oder Zustands—Aktions-
Paaren) numerische Belohnungen zu und spiegelt das Lernziel wider. Darauf auf-

'Eine IMU (Inertial Measurement Unit) ist ein Inertialsensorpaket aus Beschleunigungssen-
sor(en) und Gyroskop(en), oft ergéinzt um ein Magnetometer. Sie misst lineare Beschleunigun-
gen a und Winkelgeschwindigkeiten w im Sensorkoordinatensystem und wird zur Zustands-
/Pose-Schiitzung (z. B. mit Filter- oder Optimierungsverfahren) verwendet.

2 GRUNDLAGEN 2.2 Reinforcement Learning

bauend beschreibt die Wertfunktion V™ die erwartete Summe zukiinftiger Beloh-
nungen unter einer gegebenen Strategie (Policy) 7:

o0

Gt = Z’yth_A,_kH_l, mit 0 S v < 1,
k=0

wobei Gy die discounted Return-Summe, R, ;.1 die Belohnungen und 7 der Dis-
countfaktor ist, der bestimmt, wie stark zukiinftige Belohnungen gegeniiber un-
mittelbaren Belohnungen abgewertet werden. Die discounted Belohnungen sorgen
dafiir, dass auch weniger gute Aktionen in Kauf genommen werden, um spéter eine
grofiere Belohnung zu erhalten.

Fiir das Beispiel Schielen ist eine mogliche Belohnungsfunktion die Geschwin-
digkeit des Fufles zum Ball. Je hoher die Geschwindigkeit in Richtung Ball, umso
hérter fallt der Schuss aus. Andersherum, wenn der Fuf3 sich vom Ball weg bewegt,
wird die Belohnung negativ und entspricht einer Bestrafung. Im Gegensatz dazu
konnte eine Wertefunktion so erstellt werden, dass eine Geschwindigkeit weg vom
Ball ebenfalls positiv bewertet wird, wenn das Ausholen des Beines spéiter eine
deutlich groflere Belohnung ermdoglicht.

Dabei werden zwei wesentliche Arten von Belohnungen unterschieden: dichte
Hilfsbelohnungen, die jeden Zustand kontinuierlich bewerten und direktes Feed-
back geben, sowie spérliche Hilfsbelohnungen, die das Auftreten eines gewissen
Zustandes belohnen [19]. Ein Beispiel fiir eine dichte Hilfsbelohnung ist die oben
genannte Geschwindigkeit des Fufles in Richtung Ball, widhrend ein Beispiel fiir
eine spérliche Zielbelohnung das Beriihren des Balls ist.

Die Strategie 7 des Agenten definiert, mit welcher Wahrscheinlichkeit er in einem
Zustand s eine Aktion a auswéhlt. Ziel des Lernens ist es, diese Strategie so zu
verbessern, dass die langfristig erwartete Belohnung maximiert wird.

Mit der Belohnungsfunktion und gegebenenfalls der Wertefunktion wird aus dem
Zustandsraum eine Landschaft. Ergénzend kann auch der Aktionsraum der Land-
schaft hinzugefiigt werden. AnschlieBend wird die Landschaft durch Ausprobieren
verschiedener Aktionen in verschiedenen Zusténden erkundet.

Durch Exploration werden stichpunktartig einzelne Bereiche der Landschaft
ausprobiert, ohne dass lokale Optima gesucht werden. Im Gegensatz dazu kann
durch das Ausnutzen bekanntermafien guter Aktionen (Exploitation) ein Bereich
der Landschaft ndher untersucht und lokale Optima gefunden werden.

Dieses Spannungsfeld wird als Ezploration-Exploitation-Dilemma bezeichnet. Ei-
nerseits muss der Agent ausreichend explorieren, um neue und potenziell bessere
Strategien zu entdecken. Andererseits muss er exploiten, also bereits bekannte gu-
te Aktionen nutzen, um kurzfristig Belohnungen zu maximieren. Der Erfolg eines
RL-Verfahrens héngt entscheidend davon ab, ein Gleichgewicht zwischen diesen
beiden Anforderungen zu finden [20].

2.2 Reinforcement Learning 2 GRUNDLAGEN

Die Umgebung ist ein Interface, in dem Aktionen Zusténde zugeordnet werden,
die von Belohnungsfunktionen bewertet werden. Uber dieses Interface interagiert
der Agent mit dem Resultat der Aktionen.

Die Anzahl der kontinuierlichen Interaktionen muss hoch genug gesetzt werden,
damit die kumulierten Belohnungen konvergieren. Sobald die Belohnungen kon-
vergieren, kann das Verfahren beendet werden. Allerdings lasst sich in der Regel
nicht sagen, ob das gefundene Ergebnis einem globalen oder lediglich einem lokalen
Optimum entspricht.

Ein Durchlauf des Verfahrens ist ein Trainingsdurchlauf. Im Folgenden kann das
Resultat evaluiert werden und in einem weiteren Durchlauf kénnen die Belohnun-
gen angepasst werden (siehe Abschnitt 3.3.2).

2.2.1 Reinforcement Learning fiir Verhalten von Robotern

Das Lernen von Verhalten fiir Roboter lasst sich formal durch ein Markov Decision
Process (MDP) beschreiben [21]. Ein MDP wird iiblicherweise als Tupel

M = <S7A7P7R77ap0)
definiert. Die einzelnen Komponenten haben dabei folgende Bedeutung:

e S ist der Zustandsraum. Im Robotik-Kontext umfasst dieser alle moglichen
Zusténde, die durch die Sensorik beschrieben werden kénnen, wie beispiels-
weise Gelenkwinkel, Gelenkgeschwindigkeiten, Kréfte oder externe Messun-
gen durch Kameras oder IMUs. Die rohen Sensordaten werden dabei meist
vorverarbeitet, etwa durch Normalisierung oder Filterung, um stabile Einga-
ben fiir das Lernverfahren zu gewéhrleisten [22]. Ein Beispiel fiir Normalisie-
rung ist die Skalierung von Winkel- oder Geschwindigkeitswerten auf ein In-
tervall wie [—1, 1], sodass alle Beobachtungen vergleichbare GroBenordnungen
aufweisen.

e Aist der Aktionsraum. Er umfasst alle moglichen Steuerbefehle an die Moto-
ren des Roboters, wie zum Beispiel Sollpositionen, Geschwindigkeiten, Dreh-
momente oder auch erweiterte Parameter wie Steifigkeiten. Dabei sollten
die physischen Limits der Motoren (zum Beispiel maximale Winkel oder
Drehmomente) beriicksichtigt werden, um den Aktionsraum sinnvoll zu be-
schrinken und realistisch ausfithrbare Aktionen zu gewéhrleisten.

e P(s'|s,a) ist die Ubergangsfunktion. Sie beschreibt die Wahrscheinlichkeit,
bei Ausfithrung einer Aktion a € A aus einem Zustand s € S in einen
Folgezustand s’ € S {iberzugehen. Diese Dynamik ist in der Robotik meist
durch die physikalischen Gesetze der Mechanik und die Dynamik der Motoren
bestimmt.

2 GRUNDLAGEN 2.2 Reinforcement Learning

e R(s,a,s') ist die Belohnungsfunktion. Sie ordnet jedem Ubergang von ei-
nem Zustand s iiber eine Aktion a in einen Folgezustand s’ eine Belohnung
r € R zu. Die Belohnungsfunktion spiegelt das Lernziel wider, etwa die Fort-
bewegung des Roboters, das Greifen eines Objekts oder das Vermeiden von
Hindernissen.

e v € [0,1) ist der Discountfaktor. Er bestimmt, wie stark zukiinftige Beloh-
nungen im Vergleich zu unmittelbaren Belohnungen gewichtet werden. Ein
kleiner v fithrt zu einem kurzfristig orientierten Verhalten, ein hoher v zu
einem langfristigen Verhalten.

e po beschreibt die Anfangszustandsverteilung, aus der zu Beginn einer Episode
der Startzustand sy gezogen wird.

Der Lernprozess verldauft typischerweise in diskreten Zeitschritten ¢t = 0,1,2,.. ..
In jedem Schritt befindet sich der Agent (der Roboter) in einem Zustand s; €
S, wihlt geméaf seiner Strategie (Policy) m(a | s) eine Aktion a; € A, wechselt
mit Wahrscheinlichkeit P(s;11 | $¢,a;) in einen Folgezustand s;;1 und erhélt eine
Belohnung

Ti41 = R(St, ag, 5t+1>-

Eine solche Abfolge (s, as, 711, S¢41) wird als Transition bezeichnet und beschreibt
einen einzelnen Zeitschritt im Lernprozess.

Ziel ist es, eine Strategie m zu erlernen, welche die erwartete kumulierte und
discounted Belohnung maximiert:

J(7) = Er P, [Z v R(st, ay, St+1)] :

t=0

Dabei beschreibt J(m) die zu optimierende Zielfunktion, also den erwarteten
Gesamtertrag einer Strategie m. Die Erwartung E. p,, beriicksichtigt dabei die
Wahrscheinlichkeiten der Strategie 7, die Ubergangsdynamik P der Umgebung
und die Anfangszustandsverteilung pg. Die Summe iiber alle Zeitschritte ¢ auf-
summiert die zukiinftigen Belohnungen R(sq, as, S$¢+1), die mit dem Diskontfaktor
~v abgewertet werden, sodass unmittelbare Belohnungen stérker gewichtet sind als
weit entfernte. Das Ziel des Lernens ist es also, die Strategie m so zu verbessern,
dass J(m) moglichst grofl wird.

Dieses formale Geriist erlaubt es, ein Robotik-Szenario prézise zu beschreiben
und verschiedene Algorithmen fiir das Lernen von Verhalten systematisch anzu-
wenden und zu vergleichen [23].

2.2 Reinforcement Learning 2 GRUNDLAGEN

2.2.2 Reinforcement Learning Algorithmen

Ein weitverbreiteter Ansatz ist @)-Learning. Gelernt wird eine Wertefunktion (Q-
Funktion) fiir Zustands-Aktions-Paare, welche klassischerweise tabellarisch ange-
legt wird [24].

Die Aktualisierung der Q-Funktion erfolgt iterativ nach der klassischen Q-Learning-
Regel:

Q(st, ar) < Q(sy, ar) + 04<7‘t+1 7y max Q(sr41,a) — Q(st, Clt))-

Hierbei ist Q(s;, a;) der bisherige Wert des Zustands-Aktions-Paares, o € (0, 1]
die Lernrate, r;.; die erhaltene Belohnung nach Ausfithrung der Aktion a; im
Zustand s;, und 7 der Discountfaktor. Der Term max, Q(s;+1,a’) reprasentiert
die Schatzung des besten zukiinftigen Wertes im Folgezustand.

Das bedeutet: Wenn eine Aktion zu einer hohen Belohnung fithrt und zudem ein
vielversprechender Folgezustand erreicht wird, wird der Q-Wert fiir (s, a;) erhoht.
Fiihrt die Aktion dagegen zu einer geringen oder negativen Belohnung, wird der Q-
Wert entsprechend abgesenkt. Auf diese Weise lernt der Agent durch wiederholte
Interaktion mit der Umgebung, welche Aktionen langfristig vorteilhaft sind.

Der grofie Vorteil der Wertefunktion ist eine stabile Bewertung der Aktionen und
Zusténde. Demzufolge konnen Strategien statisch von der Q-Funktion abgeleitet
werden. Die Aktionen werden so gewéhlt, dass der Wert der Q-Funktion maximiert
wird. Dieses Verfahren kommt in hochdimensionalen Aktionsrdumen allerdings
an Grenzen, da alle Q-Werte fiir alle Zustands-Aktionspaare gespeichert werden
miissen und bei jedem Optimierungsschritt in max, Q(ssy1,a’) durchsucht werden.

Eine Erweiterung des Ansatzes - Deep @Q)-Learning - ersetzt die tabellarische
Q-Funktion durch ein neuronales Netz. Dabei wird versucht, die Q-Funktion zu
approximieren. Folglich skaliert der Ansatz besser in hohen Dimensionen, da nur
ein neuronales Netz ausgefithrt werden muss.

Die Q-Funktion mit neuronalen Netzen wird ebenso wie ihr klassisches Pendant
diskret ausgewertet und in Aktionen iiberfithrt. Der Aspekt macht dabei diesen
Ansatz nicht direkt brauchbar fiir die Robotik, weil die Motoren auf Anweisungen
in einem kontinuierlichen Format angewiesen sind. Um kontinuierliche Aktionen
zu ermoglichen, kann die Auswertung der Q-Funktion ebenfalls durch ein neu-
ronales Netz erfolgen. Diese Ansétze sind QQ-basierte Actor-Critic-Varianten wie
Deep Deterministic Policy Gradient (DDPG) [25] und Soft Actor—Critic (SAC)
[26, 27|, Diese Verfahren brauchen allerdings viele Zeitschritte und konvergieren
langsam fiir komplexe Probleme. Das liegt vor allem daran, dass in hochdimen-
sionalen Zustands- und Aktionsrdumen sehr viele Transitionen bendttigt werden,
um ausreichend Erfahrung zu sammeln. Zusétzlich ist die Exploration in kontinu-
ierlichen Aktionsrdumen aufwendig, da zufillige Aktionen oft nicht sinnvoll sind

2 GRUNDLAGEN 2.2 Reinforcement Learning

und dadurch viele Belohnungen uninformativ bleiben. Weiterhin kénnen kleine
Anderungen an Hyperparametern oder an der Umgebung das Lernen instabil ma-
chen, was die Konvergenz zusitzlich verlangsamt [28].

Ein weiterer hiufig verwendeter Ansatz ist Policy Gradient, bei dem die Stra-
tegiefunktion direkt gelernt wird. Umgesetzt wird sie dabei als neuronales Netz
und mit Gradient Ascent optimiert. Das neuronale Netz kann dabei kontinuierliche
Werte zuriickgeben und bei diskreten Werten deren Wahrscheinlichkeitsverteilung.

Bei Q-Learning (ohne neuronalen Netzen als Strategiefunktion) wird eine feste
Strategiefunktion aus der Wertefunktion abgeleitet, somit konvergiert sie statisch.
Hingegen hat Policy Gradient eine flexible Strategiefunktion unabhéngig von ei-
ner Wertefunktion, die im Laufe des Trainings flexibel konvergieren kann [28].
Eine populdre Implementierung dieses Ansatzes ist Proximal Policy Optimization
(PPO), welche Mechanismen einfiihrt, die stabile Updates der Strategiefunktion
beim Lernen begiinstigen [29].

Moderne Implementierungen dieser beiden Ansétze wie SAC oder PPO nutzen
die Actor-Critic-Architektur. Dabei gibt es eine Wertefunktion, den C'ritic, und
eine Strategiefunktion, den Actor, die beide in Form eines neuronalen Netzes um-
gesetzt werden. Der Critic soll im Laufe des Trainings das Verhalten des Actors
bewerten. Beim Lernen wird der Actor so optimiert, dass Verhalten auftritt, wel-
ches der Critic positiv bewertet. Der Critic lernt anhand von Belohnungen, das
Verhalten des Actors und den Zustand der Umgebung zu bewerten [28]. Dabei
kann er zusétzliche Informationen iiber den Zustand der Umgebung bekommen,
die der Actor nicht erhélt. Dies kann zu stabileren Bewertungen fiithren [30]. Die
Actor-Critic-Architektur vereint die Vorteile von Wertefunktionen (stabile Beur-
teilungen der Aktionen) und die Vorteile der Strategiefunktion (flexible Strate-
giekonvergenz). Nachteilig ist jedoch, dass zwei neuronale Netze optimiert werden
miissen. Das bedeutet hohere Komplexitdt und mehr Parameter, die angepasst
werden miissen [26].

In dieser Arbeit wird mit der PPO-Implementierung gearbeitet, welche erprobt
im Bereich der Robotik ist [31, 32, 33]. Trainiert wird die Strategie in der Nvidia
Issac Gym Simulation und soll anschliefend auf dem echten Roboter laufen. Hier
ergibt sich jedoch das Problem, dass der Transfer nicht trivial méglich ist; zunéchst
muss der Simulation Gap iiberbriickt werden.

2.2.3 Ubertragung in die Realitit

Die grote Herausforderung ist der Reality Gap. Dieser beschreibt die Unterschiede
zwischen Simulation und der echten Umgebung. Die Simulation kann zum Beispiel
Aspekte wie Massen, Reibungen, Kontakte und Latenzen nicht genau abbilden.
Dies sorgt dafiir, dass Strategien, die in der Simulation funktionieren, sich nicht
ohne Weiteres in die reale Welt iibertragen lassen. Zusétzlich kénnen Strategien in

2.3 Booster T'1 Roboter 2 GRUNDLAGEN

der Simulation entwickelt werden, die spezifische Fehler der Simulation ausnutzen
[34]. Ein Beispiel dasfiir ist, wenn der Agent lernt, durch einen Boden ohne korrekt
modellierte Kollision zu ,gleiten® oder sich durch unrealistisch niedrige Reibung
schneller fortzubewegen. Solche Strategien funktionieren zwar in der Simulation,
sind aber in der Realitit physikalisch unmoglich und fithren dort zu Fehlverhalten.

Eine spezielle Art des Reality Gaps stellt der Perception Gap dar. Dieser be-
schreibt die nicht genaue Abbildung von Sensorwerten wie Kamerabildern oder
IMU-Werten. Ein géngiges Beispiel sind IMU-Werte, die in der Simulation rausch-
frei sind. Eine Strategie konnte davon ausgehen, dass diese Werte auch in der
realen Umgebung immer ideal sind. Das kann zu Fehlverhalten fiihren, wenn die
echte IMU zum Beispiel durch Magnetfelder beeinflusst wird [35].

Die naheliegendste Losung der oben genannten Probleme ist, die Simulation
genauer zu machen. Dafiir werden der Roboter und seine Umgebung moglichst
genau vermessen und anschliefend in der Simulation modelliert. Dieser Ansatz
wird Systemidentifikation genannt [34, 36].

Allerdings ist es nicht moglich alle Parameter perfekt zu modellieren. Um den-
noch die Wahrscheinlichkeit der Ubertragbarkeit zu erhéhen, werden bei dem An-
satz der Domainrandomization die einzelnen Simulationsparameter bei jedem Trai-
ningsdurchlauf zufillig eingestellt. Diese sind typischerweise die Physikparameter
wie Masse oder Reibung, Offsets, Latenzen und Rauschen von Motoren, Sensor-
rauschen und Umgebungsparameter wie Positionen und Aussehen von Objekten.
Auf diese Weise lernt der Agent generelles Verhalten in verschiedenen Umgebungen
(35].

Wenn die realen Bedingungen in der Zufallsverteilung liegen, ist es moglich,
die Strategie direkt ohne weiteres Lernen in die echte Umgebung zu iibertragen
(Zero-Shot) [34, 31]. Dabei gilt es, die Breite der Zufallsverteilung abzuwégen. Eine
zu breite Verteilung kann zu suboptimalen und konservativen Strategien fiihren,
wéhrend andererseits eine zu enge Verteilung dazu fithren kann, dass die echten
Parameter auBerhalb liegen und somit keine Ubertragung in die echte Umgebung
moglich ist [34].

Insgesamt zeigt sich, dass der Reality Gap nicht vollstindig vermieden wer-
den kann. Durch Verfahren wie Systemidentifikation und Domainrandomization
lasst sich die Liicke jedoch so weit verkleinern, dass Strategien mit hoherer Wahr-
scheinlichkeit erfolgreich von der Simulation auf die reale Welt {ibertragen werden
kénnen. Damit wird der Simulationseinsatz trotz unvermeidbarer Abweichungen
zu einem zentralen Werkzeug fiir das effiziente Training in der Robotik.

2.3 Booster T1 Roboter

Um schnell mit einem RL-Projekt starten zu kénnen, sollte ein Roboter gew&hlt
werden, fiir den es bereits erprobte Simulationsmodelle gibt. Folgend ist es moglich,

10

2 GRUNDLAGEN 2.3 Booster T'1 Roboter

auf die Systemidentifikation zu verzichten. Weiterhin sollten Roboter bevorzugt
werden, die besonders robust sind, da das Testen von Strategien auf echten Robo-
tern zu instabilem Verhalten fithren kann. Fiir dieses Projekt fiel die Wahl auf den
T1 von Booster Robotics (siehe Abbildung 2.1). Ein grofler Vorteil des Roboters ist
die bereits existierende Trainings- und Simulationsumgebung Booster Gym. Diese
beinhaltet bereits ein komplett aufgesetztes Training fiir das Laufen des T'1.

O#Head Yaw
6# Right Shoulder Pitch "\ 2# Left Shoulder Pitch
4 =N

7# Right Shoulder Pitch

Right Shoulder Y. 44 Left Shoulder Y:

84# Right Shoulder aw%gé »53&— e oulder Yaw

94 Right Elbow [\t 54 Left Elbow
“ 10# Waist Yaw

174# Right Hip Pitch 114# Left Hip Pitch

18# Right Hip Roll I= 124 Left Hip Roll

o
194 Right Hip Ya B=—13#LeftHipYaw

| [
21#Right Ankle Up————— o ————15#Left Ankle Up
{

224# Right Ankle Down i . i »’71 6# Left Ankle Down
) U

s]
/ .
PP il
20# Right Kne ’1 [it) 14# Left Knee
T

Abbildung 2.2: Gelenk- und Segment-
Abbildung 2.1: Booster T1 in der La- bezeichnungen des

borumgebung. Booster T1; entspricht
der in Booster Gym
verwendeten Numme-
rierung.

2.3.1 Aufbau des Roboters

Der Roboter wird von 23 Brushlessmotoren unterschiedlicher Groflien und Stéarken
angetrieben (siehe Abbildung 2.2). Diese Motoren gelten als besonders robust und
haben einen hohen Kraft-zu-Gewicht-Anteil [37]. Dabei kann der Motor im Knie
130 Nm an Drehmoment erzeugen, was auch fiir besonders harte Schiisse reicht. Als
Kamerasystem dient eine Intel Realsense D455, die sowohl Tiefen- als auch Farb-
bilder der Umgebung erzeugen kann. Damit der T1 seine Ausrichtung wahrnehmen
kann, besitzt er in seinem Oberkorper eine IMU die lineare Beschleunigungen und
Winkelgeschwindigkeiten bereitstellt, aus denen die Ausrichtung errechnet wer-
den kann. Fiir die Berechnungen und Ansteuerungen hat der T1 zwei Rechner

11

2.3 Booster T'1 Roboter 2 GRUNDLAGEN

im Oberkorper. Der erste ist ein Nvidia AGX Orin mit 32 GB RAM und einer
Grafikeinheit. Dieser wird fiir das Ausfithren von rechenintensiven KI-Algorithmen
genutzt. Ein weiterer Rechner beinhaltet eine Intel i7 CPU und 8 GB RAM, wel-
cher fiir das Berechnen der Bewegungen benutzt wird.

12

3 METHODIK

3 Methodik

In diesem Kapitel wird die konkrete Umsetzung der Arbeit beschrieben. Aufbau-
end auf den in den Grundlagen dargestellten Konzepten werden hier die einzelnen
Schritte detailliert vorgestellt, mit denen das Schussverhalten des T1-Roboters ent-
wickelt, trainiert und schliefilich auf den echten Roboter iibertragen wurde. Dazu
gehort zunéchst die Beschreibung der eingesetzten Simulationsumgebung, die es
ermoglicht, sowohl das Robotermodell, als auch die physikalischen Eigenschaften
der Umgebung realitdtsnah abzubilden. Anschlieend wird der Trainingsprozess
erldutert, in dem der Agent durch wiederholte Interaktion mit der Simulation
das gewiinschte Verhalten erlernt. Ein weiterer Schwerpunkt liegt auf dem Be-
lohnungsdesign, das mafigeblich die Qualitit und Stabilitdt des Lernprozesses be-
stimmt. Schlielich wird auf den Transfer von der Simulation auf den realen Robo-
ter eingegangen, wobei die notwendigen Anpassungen und Herausforderungen des
Sim-to-Real-Ansatzes thematisiert werden. Ziel dieses Kapitels ist es, die gesamte
technische Pipeline transparent darzustellen und die einzelnen Umsetzungsschritte
nachvollziehbar zu machen.

3.1 Simulation

Die Simulation bildet die Grundlage des Projekts. Sie umfasst sowohl die Um-
gebung als auch das Modell des Roboters. Als Ausgangspunkt der Entwicklung
diente die Booster Gym [38]. Sie stellt ein vollstandiges Set-up fiir Simulation und
Training bereit und ist darauf ausgelegt, einem T1 das Laufen beizubringen. Die
Booster Gym ist erprobt und hat gezeigt, dass sich damit Strategien entwickeln
lassen, die auch auf den echten Roboter iibertraghar sind. Technisch basiert sie
auf der Nvidia Isaac Gym [39].

Im Folgenden wird der Aufbau der Isaac Gym erldutert. Dabei liegt der Fokus
auf den Komponenten, die fiir das Schusstraining entscheidend sind.

3.1.1 Aufbau der Simulation

Grob lisst sich Issac Gym in drei Systeme aufteilen (siehe Abbildung 3.1). Ers-
tens die Lernumgebung, welche die Logik fiir das Lernen beinhaltet. Zweitens die
Environment-Logik, welche alle nicht-physikalischen Aspekte der Simulation ver-
waltet. Dies umfasst das Laden von Modellen, das Verwalten der Beobachtun-
gen und Belohnungen und alle weiteren nicht-physikalischen Logiken. Als Drittes
dient die Physik-Engine PhysX von Nvidia zum Berechnen aller physikalischen
Vorgénge.
Die Lernumgebung bekommt Beobachtungen und Belohnungen von der Environment-

Logik und gibt Aktionen an diese zuriick. Die Kommunikation mit PhysX erfolgt

13

3.1 Simulation 3 METHODIK

iiber die Isaac Gym Tensor API, welche die Aktionen weitergibt. Im Gegenzug lie-
fert PhysX nach jedem Zeitschritt ein Update der physikalischen Zusténde zuriick,
das anschlieBend in die Environment-Logik einflieSt. Dort kénnen mehrere Um-
gebungen parallel definiert werden. Jede dieser Umgebungen enthélt stets einen
Actor — in diesem Fall den Roboter — sowie die dazugehorige Umgebung. Sie sind
physikalisch voneinander getrennt und interagieren nicht miteinander.

Learning Framework

step command, observation
action tensors tensors

Environment Logic
(Observation, reward, non-physics logic)

=
o
(O] action, configl T environment
- tensors states
IsaacGym Tensor API
PhysX
Abbildung 3.1: Isaac Gym — Komponenten und Datenfluss der RL-

Simulationsarchitektur: ~ Lernumgebung (Strategie/Training),
Environment-Logik (Beobachtungen, Belohnungen, Aktionswei-
tergabe) und PhysX (GPU-basierte Physik) mit Kommunikation
iiber die Isaac-Gym-Tensor-API. Quelle: Makoviychuk et al.
(2021) [39].

Jede Umgebung stellt dabei einen eigenen physikalischen Raum dar, in dem Ob-
jekte, die als Rigid Bodies bezeichnet werden, existieren. Ein Rigid Body ist durch
seine Form, Position, Rotation und Geschwindigkeit definiert. Der Actor kann aus
mehreren Rigid Bodies bestehen, die durch Gelenke miteinander verbunden sind.
Welche unterschiedliche Freiheitsgrade (Degrees of Freedom, DOF) aufweisen, die
bestimmen, in welchen Richtungen sich das Gelenk bewegen kann; zum Beispiel
hat ein Servomotor nur einen Freiheitsgrad, wiahrend ein Kugelgelenk zwei hat.

Mit der API konnen die wichtigsten Eigenschaften des Robotermodells abge-
fragt werden. Sie liefert Informationen zu Position, Orientierung sowie linearen
und Winkelgeschwindigkeiten der Rigid Bodies. Dariiber hinaus stellt sie fiir die

14

3 METHODIK 3.1 Simulation

Freiheitsgrade Winkelpositionen und -geschwindigkeiten bereit und ermdéglicht den
Zugriff auf Kontaktkrifte zwischen Objekten.

Die Umgebung mit Beobachtungen und Belohnungen, der Lernprozess und PhysX-
Parameter definieren zusammen einen Task. Der explizite Aufbau des Tasks fiir
das Schieflen soll im folgenden dargestellt werden.

3.1.2 Umgebung und Robotermodell

Das mit der Booster Gym gelieferte Robotermodell des T1 enthélt bereits alle
relevanten Motoren, Massen und Formen. Neben den sichtbaren Formen existie-
ren vereinfachte Kollisionsformen. Sie bestimmen, wie Kollisionen berechnet wer-
den, und reduzieren dabei die Komplexitiat der Simulation. In dem Modell des T'1
werden Beine als Zylinder und Fiile sowie Oberkorper als Rechtecke vereinfacht
(siche Abbildung 3.2). Damit findet eine vereinfachte Kollision zwischen Ball und
Fuf3 statt. Das vergroflert den Reality-Gap, wird aber in Kauf genommen, um eine
schnellere Simulation zu ermoglichen.

Der Ball wird als eine Kugel der Masse 0,2 kg und mit einem Durchmesser
von 0,15 m modelliert. Der Task ist so aufgebaut, dass in einer Umgebung der
Ball immer vor dem linken Fufl des Roboters platziert wird (siche Abbildung 3.3).
Das Koordinatensystem ist so ausgerichtet, dass der Roboter in Richtung X-Achse
schaut, parallel zur Y-Achse steht und die Z-Achse nach oben zeigt. Die Umgebung
ist nicht statisch aufgebaut, sondern wird zuféllig initialisiert.

Abbildung 3.2: Vereinfachte Kollisions- Abbildung 3.3: Schuss-Task in der Si-

formen im T1-Modell: mulation: Ball initial
Zylinder fiir Beinseg- vor dem linken Fufl des
mente sowie Quader fiir T1, Roboter blickt ent-
Fiile und Oberkorper. lang der X-Achse (Y la-

teral, Z nach oben).

15

3.2 'Training 3 METHODIK

3.1.3 Domain Randomization

Um den Reality Gap zu verringern, kommt die Booster Gym bereits mit eini-
gen Randomisierungen (siehe Tabelle A.3). So werden beim Initialisieren eines
Roboters deren Parameter fiir die Freiheitsgrade und die Massen der einzelnen
Bestandteile des Roboters zufillig aus einem gewissen Bereich gewahlt. Dadurch
erhélt jeder simulierte Roboter leicht abweichende Eigenschaften. Das fordert Stra-
tegien, die auf unterschiedliche T'1 Roboter iibertragbar sind — denn auch die realen
Roboter weichen in diesen Punkten voneinander ab.

Bei jedem Zuriicksetzen einer Umgebung werden zudem weitere Parameter zuféllig
verdndert. Dazu gehoren die Anfangspositionen der Motoren, damit der Actor mit
unterschiedlichen Startkonfigurationen zurechtkommt.

Um zum Lernen in diversen Ausgangssituationen beizutragen, werden die initiale
Rotation des Roboters um die Z-Achse und die Position des Balls vor dem linken
FuB in einem gewissen Bereich zufillig gewahlt.

Weiterhin wird eine Ansteuerungsverzégerung simuliert, indem die Weitergabe
der Aktionen an die Physik-Engine um ein zufilliges Zeitintervall verzogert wird.
Dies ist wichtig, da auch die reale Hardware Kommunikation und Signaliibertragung
nicht verzégerungsfrei ist und somit ein realistischeres Verhalten nachgebildet wer-
den kann.

Um authentische Sensorwerte und Beobachtungen nachzustellen, wird ein Rau-
schen addiert, das nach dem Prinzip einer Gaulverteilung erzeugt wird.

3.2 Training

Unter Training versteht man den Prozess, bei dem der Agent durch wiederholte
Interaktion mit der simulierten Umgebung ein Zielverhalten erlernt. Er sammelt
dabei Erfahrungen und leitet aus diesen Verbesserungen fiir seine Strategie ab.
Dieses Kapitel erlautert den Aufbau und Ablauf des Trainings.

3.2.1 Ablauf des Trainigs

Zu Beginn des Trainings werden alle Umgebungen wie in Abschnitt 3.1.2 beschrie-
ben initialisiert. Um die Parallelisierbarkeit der Simulation auszunutzen, werden
4096 Umgebungen gleichzeitig erstellt. Die Anzahl an méglichen Umgebungen wird
durch die Hardware des Trainingsrechners limitiert. Anschliefend werden die ein-
zelnen Simulationsschritte ausgefiihrt.

Ein Trainingsschritt entspricht 0,02 s. Zunéchst werden die Aktionen des Actors
relativ zu den Motor-Standardstellungen in Zielpositionen iibersetzt. Anschlie-
Bend laufen zehn Physikberechnungen (Physikschritte) a 0,002 s ab, wobei der

16

3 METHODIK 3.2 Training

Verzogerungsparameter bestimmt, in welchem Schritt die Aktion an die Physiken-
gine iibergeben wird (vgl. Abschnitt 3.1.3).

Da die Physikengine Drehmomente erwartet, miissen die Zielpositionen erst um-
gewandelt werden. Dies geschieht nach folgenden Vorgehen:

Gi(t) = ql*(t — Atact) (verzogertes Ziel) (3.1)
7 D(t) = Ky (G:(t) — 4:(t)) — Kai dilt) (PD-Regler) (32)
79(t) = min(7¢, |77°(1)]) sen(r P (1)) (Coulomb-Reibung) (3.3)

7i(t) = Clip(TZ»PD(t) — Tihe(t), —pmex, Tz-max) (Sattigung) (3.4)

Mit clip(z, a,b) = max{min{x, b}, a}. Hierbei bezeichnet ¢ die vom Actor vorge-
gebene Sollposition des Gelenks, die aufgrund der modellierten Verzogerung At
erst zeitversetzt beriicksichtigt wird. Der PD-Regler erzeugt daraus ein Drehmo-
ment TPD wobei K, ; die Steifigkeit und K, ; die Ddmpfung darstellt. Um die stati-
sche Relbung zu beriicksichtigen, wird zusétzlich ein Reibmoment 77¢ abgezogen,
das durch die Reibschwelle 77 begrenzt ist. Schliefllich wird das resultierende Dreh-
moment 7; auf die zuldssigen Grenzwerte £7,"** beschnitten. Dem folgend wird ein
Physikschritt ausgefiithrt und die Motorpositionen werden aktualisiert.

Sind alle Physikschritte abgeschlossen, erfolgt die Aktualisierung der Umge-
bungszustédnde. Dazu zdhlen der Actor Root State und der Rigid Body State, die
Informationen {iber Position, Ausrichtung sowie Linear- und Winkelgeschwindig-
keiten liefern. Ergénzend wird im Contact Force State die Kraft zwischen den sich
beriihrenden Objekten erfasst.

Im Anschluss wird ermittelt, ob Stéf8e und Tritte auftreten und wie stark sie aus-
fallen. Die resultierenden Impulse werden im néchsten Physikschritt angewendet.
Danach werden die Abbruchbedingungen gepriift. Tritt eine Bedingung ein, wird
die gesamte Umgebung zuriickgesetzt. Anschliefend werden die Teilbelohnungen
berechnet und zur Gesamtbelohnung aufsummiert. Zuletzt werden die Beobach-
tungen sowie die privilegierten Beobachtungen (nur fiir den Critic) erzeugt. Liegen
Beobachtungen und Belohnungen vor, beginnt das Training.

3.2.2 Implementierung

Das Training ist nach der PPO-Implementierung [29] umgesetzt, die eine Actor
Critic Architektur benutzt. Dies umfasst zwei neuronale Netze, deren Aufbau in
Tabelle A.8 beschrieben ist. Der Aufbau des Trainings und die Einstellung der
Parameter wurden von der Booster Gym iibernommen (siehe Tabelle A.7 & Ta-
belle A.6). Als Eingabe bekommen der Actor und der Critic Beobachtungen (siche
Tabelle A.1 & Tabelle A.2), welche in einem asymmetrischen Trainingsprozess [30]

17

3.3 Lernsignale 3 METHODIK

verwertet werden. Dafiir bekommt der Critic mehr Informationen iiber die Um-
gebung als der Actor, welche die bereits erwdhnten privilegierten Beobachtungen
sind. Die Ausgabe des Actors sind die Abweichungen von den Standardmotorpo-
sitionen (siehe Abschnitt 3.2.1) der Unterkérpermotoren (Gelenk-ID 11-22; siehe
Abbildung 2.2). Der Critic gibt einen einzelnen Wert zuriick, der bewertet, wie
gut ein aktueller Zustand ist. Ziel des Trainings ist es, dass der Actor lernt, wie
er durch seine Aktionen in moglichst gut bewertete Zustinde kommt. Der Critic
hingegen lernt, wie er Zustdnde der Umgebung so bewerten kann, dass er den er-
warteten zukiinftigen Belohnungswert eines Zustands abschétzt und so dem Actor
eine Orientierung fiir die Auswahl seiner Aktionen gibt.

In einer Trainingsepoche werden 24 Trainingsschritte ausgefiihrt. Dabei werden
Erfahrungen in Form von Beobachtungen und Belohnungen angesammelt und fiir
das anschlieBende Training benutzt. Das Optimieren findet in 20 Mini-Epochen
statt. In jeder Mini-Epoche werden die Netzwerke einmal aktualisiert. Anschlie-
Bend startet eine neue Epoche mit den aktualisierten Netzwerken. Details zu den
Parametern des Trainings sind in Tabelle XX zu finden. Um diesen Trainings-
prozess zu optimieren und Fehler zu beheben, ist eine wie folgend beschriebene
Trainingsiiberwachung entscheidend.

3.2.3 Trainingsiiberwachung

Um einen Einblick in den Fortschritt und die Qualitdt des Trainings zu bekom-
men, werden verschiedene relevante Informationen im Loggingtool Weights and
Biases [40] gespeichert. Dazu zéhlen unter anderem die einzelnen Belohnungen,
wie stark die Vorhersage der Modelle vom gewiinschten Zielwert abweicht (loss)
und der Entropy-Wert des PPO. Ebenso wird alle 500 Epochen ein fiinfsekiindiges
Video gespeichert. Da die gespeicherten Aufnahmen direkt einen unkomplizierten
Einblick geben, ob das Hauptziel erreicht wurde, stellten sie sich als sehr niitzliches
Evaluationswerkzeug heraus. Ebenso konnte unerwiinschtes Verhalten leicht iden-
tifiziert werden.

3.3 Lernsignale

Das Finden eines Belohnungsdesigns, das stabiles Schieflen ermoglicht, ist die zen-
trale Aufgabe dieser Arbeit. Dafiir wurden verschiedene Belohnungen eingefiihrt
und getestet. Dieser Abschnitt soll neben den Belohnungen auch die Evaluierungs-
strategie erlautern. Fiir eine vollsténdige Liste der Belohnungen, siehe Tabelle A.4.

18

3 METHODIK 3.3 Lernsignale

3.3.1 Belohungsdesign

Die Belohnungen fiir den Schuss werden in zwei Phasen vergeben: zuerst fiir
Zusténde vor dem Schuss in Phase eins, in Phase zwei werden Belohnungen fiir
Zusténde nach dem Schuss vergeben.

Phase eins beinhaltet dichte Belohnungen, die den Agent in Richtung eines
Schusses leiten sollen. Die wichtigste Belohnung wichst mit sinkender Distanz
zwischen Fufl und Ball exponentiell. Weiterhin wird eine Oberkorperausrichtung
in Schussrichtung belohnt, was eine richtige Ausrichtung des Agents vor dem Schie-
Ben bewirkt.

Alle Belohnungen, die in Phase 2 auftreten, sind spérliche Belohnungen, die
nur vergeben werden, wenn der Agent den Ball schiet. Dazu zéhlt die Hauptbe-
lohnung, die eine hohe Geschwindigkeit des Balles in eine Zielrichtung belohnt.
Konkret bedeutet es, dass Verhalten belohnt werden soll, das zu einem starken
Schuss fithrt. Je ldnger der Ball nach dem Schuss rollt, desto geringer féllt die
Belohnung aus. Dies soll ermoglichen, dass Belohnungen, die fiir das Stehen nach
dem Schuss zustdndig sind, mit der Zeit iiberwiegen. Es hat sich gezeigt, wenn
der Agent eine zu dominante Schussbelohnung bekommt, zu starke Schiisse erlernt
werden, die das anschlieBende Stehen verhindern. Um dies zu vermeiden, wurde
die maximale Belohnung fiir die Ballgeschwindigkeit in Zielrichtung begrenzt. Ei-
ne erginzende Belohnung fiir die Ballbeschleunigung dient als spérliche Belohnung
des Schiefens.

Um das Uberleben (nicht Erreichen einer Abbruchbedingung, siehe Abschnitt 3.3.3)
des Agents zu belohnen, wird kontinuierlich eine Belohnung vergeben, solange der
Agent lebt. Diese Belohnung ist vor dem Schieflen halb so grof}; wie danach. Es
dient einerseits als spérliche Belohnung fiir das Schieflen, und andererseits soll der
Agent in der Phase vor dem Schielen ermutigt werden, auch riskantere Aktionen
auszuprobieren, die zu einem verbesserten Schussverhalten fiithren.

Eine weitere, wichtige Gruppe von Belohnungen soll sicherstellen, dass der Robo-
ter nicht umfillt. Eine Bestrafung des Agents erfolgt, je weiter seine Oberkorperhche
vom Aufrechten Stehen (0,68 m) entfernt ist und nimmt quadratisch zu. Zusétzlich
wird eine Bestrafung eingefiihrt, die das Nicht-Aufrechtstehen des Oberkorpers
verhindern soll. Dafiir wird der x- und y-Anteil des Gravitationsvektors im Koor-
dinatensystem des Agents aufsummiert. Diese Bestrafung steigt ebenfalls quadra-
tisch an, je schrager der Agent steht. Da Hinfallen mit einer Beschleunigung des
Oberkorpers einhergeht, wird diese ebenfalls bestraft. Im gleichen Sinne wird eine
Geschwindigkeit des Agents in der Z-Achse bestraft.

Damit der Agent lernt, nach dem Schuss stillzustehen und wéhrend des Schus-
ses seinen Oberkorper moglichst wenig zu bewegen, wird er belohnt, je ndher seine
Geschwindigkeiten in der X- und Y-Achse an 0 m/s sind. Auch wird eine Win-
kelgeschwindigkeit in der Z-Achse von 0 rad/s belohnt und durch eine ergénzende

19

3.3 Lernsignale 3 METHODIK

Bestrafung der Winkelgeschwindigkeit unterstiitzt.

Um einen Anreiz fiir moglichst energieeffiziente und ruhige Bewegungen zu schaf-
fen, wurden verschiedene Bestrafungen eingefiihrt. Zentral ist dabei die Bestrafung
der Aktionsraten. Diese entspricht der Distanz zwischen den aktuellen Motorpo-
sitionen und den Positionen aus dem letzten Trainingsschritt. Damit sollen grofie
Anderungen in den Aktionen unwahrscheinlicher werden. Zusétzlich wird bestraft,
wenn die Motoren hohe Drehmomente aufbringen miissen und diese Drehmomen-
te nahe an die Hardwaregrenzen gelangen. Ahnlich werden Geschwindigkeit, Be-
schleunigung und Limits der Freiheitsgrade bestraft. Ergénzend wird eine hohe

Leistung bestraft.
Tpower — — Z ‘Ti : QZ|

Dabei bezeichnet 7; das vom i-ten Motor aufgebrachte Drehmoment und ¢; dessen
Winkelgeschwindigkeit. Das Produkt entspricht der Leistung des Motors. Durch
die Summation iiber alle Motoren und das negative Vorzeichen wird erreicht, dass
hohe Gesamtleistung als Bestrafung wirkt. Dies soll energieeffiziente Bewegungen
ermoglichen.

Unkontrolliertes Fuflverhalten ist ein Problem, das stabiles Stehen und Schielen
erschwert. Um dies zu verhindern, wird der Agent bestraft, wenn seine Fiifle in der
Yaw- (Drehung um Z-Achse) und Pitch-Ausrichtung (Drehung um X-Achse) von
0 Grad abweichen. Ergénzend dazu wird er bestraft, wenn die Yaw-Ausrichtungen
der Fiile unterschiedlich sind. Damit der Agent beim Schieflen nicht seine Fiifle
iiber den Boden schiebt, wird das Gleiten der Fiifle iiber den Boden bestraft.

Das Anpassen dieser Belohnungen stellt eine zentrale Aufgabe der Arbeit dar.

3.3.2 Evaluationsstrategien

Belohnungen sollen dafiir sorgen, dass gewiinschtes Verhalten vermehrt auftritt
und unerwiinschtes Verhalten ausbleibt. Dafiir miissen die Belohnungen passend
skaliert sein und zum richtigen Zeitpunkt vergeben werden. Um dies zu bewéltigen,
wurden verschiedene Strategien entwickelt.

Zu Beginn lohnt es sich, mit einem minimalen Set an Belohnungen zu starten.
Anfangs wurden die Belohnungen fiir das Lauftraining aus der Booster Gym be-
nutzt. Diese sind nicht minimal fiir das Schieflen, fithren aber erprobterweise zu
einem stabilen Verhalten. Ergénzt wird das Initialset durch die Hauptbelohnung,
Ballgeschwindigkeit in Zielrichtung. Es hat sich herausgestellt, dass es sinnvoll ist,
eine Hauptbelohnung zu haben, die in der Skalierung die restlichen Belohnungen
iibertrifft und dariiber hinaus das Zielverhalten moéglichst direkt belohnt.

Die relative Skalierung der Belohnungen untereinander spielt eine entscheidende
Rolle. Belohnungen mit hoheren Werten werden stérker beim Training optimiert
als solche mit niedrigeren Werten. Dies kann im Extremfall allerdings dazu fiithren,

20

3 METHODIK 3.3 Lernsignale

dass wenn eine Belohnung zu dominant ist, andere Belohnungen vollig ignoriert
werden. So fiihrt eine iiberméflige Belohnung der Ballgeschwindigkeit zum sehr
starken Schielen des Agents, der jedoch anschlieSfend umféllt. Die Skalierung ent-
scheidet so iiber die Prioritdt der Belohnungen.

Das Einsehen und Uberwachen der Skalierungen ist in Weights and Biases
moglich. Abbildung 3.4 zeigt beispielhaft drei Belohnungen mit unterschiedlichen
Skalierungen. Es ist zu sehen, dass die Hauptbelohnung (Abb. 3.4c) zu Beginn
eine niedrigere Skalierung hat als die Belohnung fiir die lineare Geschwindigkeit
x (Abb. 3.4b). Das ldsst sich damit erkléren, dass erst im spéteren Trainings-
verlauf der Agent lernt, den Ball zu schieflen, und dadurch die Belohnung fiir
die Ballgeschwindigkeit bekommt. Sodass erst nach ca. 1000 Trainingsepochen die
Ballgeschwindigkeit dominanter als die Linare Geschwindigkeit wird. Daraus ldsst
sich ableiten, dass erst mit dem Trainingsfortschritt zu erkennen ist, ob die Ska-
lierungen richtig gesetzt wurden.

21

3.3 Lernsignale 3 METHODIK

Ballbeschleunigung

Belohnung
o o o
» o co

o
N

o
=)

0 2000 4000 6000 8000 10000
Schritt

(a) Ballbeschleunigung

Tracking - lineare Geschwindigkeit (X)

Belohnung
= N N
w o (%]

=
=)

=3
n

0 2000 4000 6000 8000 10000
Schritt

(b) Lineare Geschwindigkeit z

Ballgeschwindigkeit in Zielrichtung

Belohnung
- N w S w o

=)

0 2000 4000 6000 8000 10000
Schritt

(c) Ballgeschwindigkeit in Zielrichtung

Abbildung 3.4: Beispielhafte Skalierungen von Belohnungen im Trainingsverlauf.
Dabei ist zu sehen, dass die Belohnung der Ballgeschwindigkeit in
Zielrichtung erst im spéteren Trainingsverlauf die Belohnung der
linearen Geschindigkeit = als dominante Belohnung abloft.

Dichte Belohnungen sollten eingefiihrt werden, wenn das gewiinschte Verhalten
trotz sparlicher Hauptbelohnung ausbleibt. Diese schrinken die Exploration ein,
konnen im Gegenzug den Agent schneller zu einem gewiinschten Verhalten bringen.
So fithrt das Belohnen einer geringen Distanz zwischen Fufl und Ball dazu, dass

22

3 METHODIK 3.3 Lernsignale

der Agent schneller versteht, dass der Fufl zum Schieflen in Richtung Ball bewegt
werden muss, allerdings macht es im Gegenzug ein Ausholen mit dem Bein vor
dem Schieflen unwahrscheinlicher.

Einzelne Belohnungen kénnen im Gegensatz zueinanderstehen. So werden schnel-
le Motorgeschwindigkeiten bestraft, die im Gegensatz zu den Belohnungen fiir
einen harten Schuss stehen. Dies kann, bei falscher Skalierung, das Erlernen eines
optimalen Verhaltens, bezogen auf einzelne Belohnungen, verhindern. Andererseits
kann bei passender Skalierung ein Verhalten gefunden werden, welches beide Be-
lohnungen beriicksichtigt. Wie stark die beiden Belohnungen relativ zueinander
skaliert sind, entscheidet dabei, welche Belohnung wie stark beriicksichtigt wird.

Eine besondere Herausforderung bei dem Design und der Evaluation war der
zweiphasige Charakter der Belohnungen. Das Wegfallen einzelner Belohnungen,
sobald der Ball geschossen ist, interpretiert der Agent als Bestrafung, da die Ge-
samtbelohnung abféllt. Um dies zu kompensieren, wurden die dichten Belohnun-
gen, die nur in der Vorschussphase oder in der Nachschussphase existieren, mi-
nimiert. Zusétzlich wurden friithere spérliche Belohnungen wie die Beriihrung des
Balles ersetzt durch die Belohnung fiir die Ballgeschwindigkeit in Zielrichtung.
Diese Belohnung tritt zwar nur spéarlich auf, wird aber anschliefend iiber einen
langeren Zeitraum vergeben. Dies soll dazu beitragen, den Wegfall einzelner Be-
lohnungen in der Nachschussphase zu kompensieren.

Um die Belohnungen fiir den Schuss auf Fehler zu {iberpriifen, reicht es nicht
aus, sich die Gesamtskalierung wie in Abbildung 3.4 anzuschauen. Es ist zusétzlich
erforderlich, sich die Skalierungen iiber den zeitlichen Verlauf anzuschauen (siehe
Abbildung 3.5). Dabei ist zu erkennen, dass wiahrend des Schusses (siche Anstieg
der Belohnung der Ballgeschwindigkeit) eine starke Bestrafung fiir die Aktionsrate
vergeben wird. Um eine in der Bilanz positive Gesamtbelohnung zu bekommen,
muss beachtet werden, dass die Bestrafung ausreichend ausgeglichen wird. Sonst
lernt der Agent nicht das Schieflen, da er fiir die Schussbewegung insgesamt bestraft
wird.

Neben den bereits ausgefithrten Belohnungen sind Abbruchbedingungen eine
weitere Moglichkeit, Einfluss auf das Erlernen des Verhaltens zu nehmen.

23

3.3 Lernsignale 3 METHODIK

Belohnungen warend eines Schusses

—— Ballgeschwindigkeit Zielrichtung
Ballbeschleunigung

1251 —— Drehmomente

—— Aktionsrate

1.00

0.757

Belohnung

0.50
0.25
0.00 - /\/ \J“v W
-0.251
0 20 40 60 80 100
Zeitschritt

Abbildung 3.5: Verlauf von ausgewihlten Belohnungen wéhrend eines Schusses.
Das starke Ansteigen der Belohnung fiir die Ballbeschleunigung in
Zielrichtung markiert den Zeitpunkt der Ballberiihrung.

3.3.3 Abbruchbedingungen

Wenn Abbruchbedingungen (siehe Tabelle A.5) eintreten, wird eine Umgebung
zuriickgesetzt und beendet eine kontinuierliche Sammlung von Beobachtungen und
Belohnungen. Sie entscheiden, welche Erfahrungen und Belohnungen fiir den Agent
zuganglich sind. Die Bedingungen sollten so gewéhlt werden, dass sie eine Abgren-
zung zu Verhalten bilden, welches nicht mitgelernt werden soll. So ist das Aufstehen
nach einem Fall nicht Teil des Schusstrainings.

Um dementsprechend eine Abgrenzung von dem Fallen zu ermoglichen, gibt
es zwei Abbruchbedingungen, die bei einem Fall eintreten. Erstens, wenn der
Oberkorper eine gewisse Hohe unterschreitet und zweitens, wenn die Geschwin-
digkeit des Oberkorpers zu grofl wird.

Zum Abbruch kommt es auch, wenn der Ball zu lange nicht beriihrt wurde,
oder eine gewisse Geschwindigkeit nach dem Schieflen unterschreitet. Diese dienen
dazu, den Agent von Belohnungen auszuschlielen, die lediglich durch langes Stehen
zustande kommen.

Eine weitere Bedingung bricht ab, wenn der Ball lange genug gerollt ist. Das
entspricht einem Abbruch im Erfolgsfall und sorgt dafiir, dass der Agent von vorn
beginnen kann. Die letzte Bedingung bricht ab, wenn der Durchlauf zu lange dauert
und keine andere Abbruchbedingung eintritt. Dies soll endlose Durchldufe unter-
binden.

24

3 METHODIK 3.4 Sim-to-Real

3.4 Sim-to-Real

Das finale Ziel ist, dass die gelernte Strategie auch auf einen echten T1 Roboter
lauft. Dies ist allerdings nicht ohne Weiteres moglich. Sowohl das Transfersetup
muss stimmen als auch der gesamte Trainings- und Simulationsprozess. Im Fol-
genden soll die Software beschrieben werden, welche die in der Simulation gelernte
Strategie ausfiihrt.

3.4.1 Set-up auf dem Roboter

Ausgefiihrt wird die Strategie auf dem Intel Rechner des T1, da dieser ausreichend
Leistung besitzt, um das Actor-Modell auszufiihren. Wichtig ist das Timing beim
Ausfiihren der Strategie und beim Ubergeben der Motorsignale. Die Strategie wird
wie im Training alle 0,02 s ausgefiihrt und die Motorsignale werden im gleichen
Zeitintervall wie der Simulationsschritt von 0,002 s iibergeben. Dabei werden diese
geddmpft, indem immer nur 20% des neuen Motorsignals iibergeben werden:

qiiltered =0.8- qgiiulared +0.2. q‘;arget
Hierbei ist gfi*red das geglittete Motorsignal zum Zeitpunkt ¢, gi*e*d das vorherige

geglittete Signal und q;*"®*" das aktuelle Zielsignal aus der Strategie. Durch diese

rekursive Mischung wird erreicht, dass sprunghafte Anderungen im Motorsignal
abgefedert werden und die Bewegungen des Roboters glatter und stabiler verlaufen.

Mit diesem Set-up konnen die Strategien auf dem echten Roboter getestet wer-
den. Dabei miissen weitere Anpassungen an der Strategie vorgenommen werden,
bevor ein stabiles Schussverhalten auf dem echten Roboter laufen kann.

3.4.2 Sim-to-Real-Transfer

Trotz vorbeugender Mafinahmen wie Randomization hat sich der Transfer der
Strategie auf den echten Roboter als eine Herausforderung erwiesen. Eines der
grofiten Probleme war ein Zittern im ganzen Korper, was zu hektischen Bewegun-
gen gefithrt hat. Dadurch konnte der Roboter nicht stabil stehen und die ruck-
artigen Bewegungen waren sowohl fiir den Roboter als auch fiir den Menschen
gefiahrlich. Ein weiteres Problem war, dass der Roboter vor jedem Schuss sehr
lange gewartet hat bzw. gar nicht geschossen hat. Beide Probleme konnten mit
Finetuning behoben werden. Dabei wird die bereits existierende Strategie weiter-
trainiert mit verdnderten Parametern wie den Belohnungsskalierungen.

Um das Zittern zu verhindern, wurden diverse Bestrafungen erhéht die eine
ruhige Bewegung ermoglichen sollen. Das umfasst eine hohere Bestrafung der Ak-
tionsrate, damit schnelle und groBe Anderungen stérker sanktioniert werden; hohe
Drehmomente, die vorwiegend bei ruckartigen Bewegungen auftreten; die Fuf-
Yaw-Ausrichtung und den Unterschied zwischen den Fiiflen; sowie das Gleiten der

25

3.4 Sim-to-Real 3 METHODIK

Fiifle iiber den Boden, um ein stabiles Fuflverhalten zu erzwingen. AnschlieSend
wurde die Strategie, die das Problem mit dem Zittern aufwies, weitertrainiert. Dies
fithrte zu ruhigem und stabilem Verhalten.

Um das Warten vor dem Schuss zu verhindern, wurde eine zusétzliche Bestrafung
eingefiihrt. Sie steigt mit der Zeit an, in der der Ball nicht beriihrt wird, und
fallt nach einem Schuss sofort weg. Dadurch wird nicht nur schneller geschossen,
sondern der Wegfall der Bestrafung dient gleichzeitig als spérliche Belohnung. Mit
dieser Anpassung konnte die bereits weitertrainierte Strategie erneut optimiert
werden. Anschliefend hat der Roboter deutlich schneller den Schuss ausgefiihrt.
Das Ergebnis ist ein Zero-Shot Transfer des Verhaltens aus der Simulation in die
echte Umgebung, ein Weitertrainieren mit echten Daten war nicht mehr notig.

26

4 DISKUSSION

4 Diskussion

Um eine Schussbewegung fiir den T'1 Roboter zu entwickeln, wurde eine Simulation
entworfen, die den Roboter und seine Umgebung simuliert. Mit einem angepassten
Belohnungsdesign ist es gelungen, einen Trainingsprozess umzusetzen, der in der
Lage ist, eine Strategie zu finden, welche sowohl in der Simulation (siehe Abbil-
dung 4.1a) als auch auf den echten Roboter funktioniert (siehe Abbildung 4.1b).
Ein weiteres Trainieren mit echten Daten war nicht notwendig.

(a) Simulation
wBl
,,- |

(b) Echter Roboter

Abbildung 4.1: Schuss-Sequenzen in der Simulation (oben) und auf dem echten
Roboter (unten). Es ist zu erkennen, dass zum Schieflen ein kraft-
voller Ausfallschritt genutzt wird.

Dabei war das Einfiihren von dichten Belohnungen, die jeweils nur in der Phase
vor dem Schieflen auftreten, ein entscheidender Aspekt. Ausschliellich spérliche
Zielbelohnungen fiithrten nur sehr langsam zu einem Schussverhalten, da es nur
selten vorkommt, dass der Roboter in der Simulation den Ball zuféllig beriihrt. Die
dichten Belohnungen konnten hingegen zuverlissig in Richtung Schussbewegung
fithren und verhalfen den Agent so schneller zu einem Schussverhalten.

Des Weiteren erwies sich das Finetuning als hilfreiche Mafinahme, um Transfer-
probleme zu 16sen. Angepasst wurden dabei Belohnungen, die entweder neu hinzu-
gefiigt oder in der Skalierung veréndert wurden. Das Verfahren konnte erfolgreich
eingesetzt werden, um Probleme mit starkem Zittern und langem Warten vor dem
Schieflen zu beheben, die ausschlielich auf dem echten Roboter auftraten.

Bemerkenswert ist, dass die Trainingsparameter und die Modellearchitektur fiir
das Laufen unverdndert auch fiir das Schieflen benutzt werden konnten. Das lasst

27

4 DISKUSSION

vermuten, dass diese ebenfalls fiir das Erlernen von weiteren Bewegungen genutzt
werden konnen.

Die Qualitdt der Strategie lasst sich sowohl an der Schusshéufigkeit als auch
an der erreichten Ballgeschwindigkeit in Zielrichtung messen. Dabei konnte in der
Simulation eine Schusshaufigkeit von 84 % mit einer Durchschnittsballgeschwin-
digkeit von 6,75 m/s in Zielrichtung erreicht werden. Die Testdurchldufe wurden
mit den gleichen Abbruchbedingungen und Randomisierungen wie im Training
durchgefiihrt. Tabelle 4.1 fasst die wichtigsten Kennzahlen aus der Simulation zu-
sammen.

Tabelle 4.1: Ergebnisse der Simulation des Schuss-Trainings

Kennzahl Wert Einheit
Anzahl Testdurchlaufe 20.000 -
Erfolgreiche Schiisse 16.936 -
Umgefallene Roboter 365 -
Durchschnittliche Ballgeschwindigkeit in Zielrichtung 6,75 m/s
Standardabweichung Ballgeschwindigkeit in Zielrichtung 1,06 m/s
Maximale Ballgeschwindigkeit in Zielrichtung 11,55 m/s

Eine dhnliche Auswertung fiir die Strategie auf dem echten Roboter ist, aufgrund
des aufwendigeren Set-ups fiir das Tracking des Balles, ausstehend.

Die Erkenntnisse dieser Arbeit decken sich mit den bekannten Stérken von Re-
inforcement Learning fiir kontinuierliche Ganzkorperprobleme, wie unbegrenzte
Daten durch Simulation und das Erlernen komplexer Verhaltensweisen und deren
Herausforderungen wie datenintensives Training, Reality Gap und hohe Anforde-
rungen an das Belohnungsdesign [41, 21, 42, 43]. Aus den Erkenntnissen dieser
Arbeit lassen sich dementsprechend folgende praktische Leitlinien ableiten:

e Phasen—bewusstes Belohnungsdesign
e Dichte Hilfsbelohnungen, die zum Schuss fiihren

e Finetuning gegen Transferprobleme

28

5 FAZIT

5 Fazit

In dieser Arbeit wurde gezeigt, dass durch eine geeignete Kombination aus rea-
litdtsnaher Simulation, gezieltem Belohnungsdesign und phasenbewusstem Trai-
ning, ein komplexes Ganzkorperverhalten wie das Schieflen erfolgreich mit Re-
inforcement Learning erlernt und auf einen realen T'1-Roboter iibertragen werden
kann. Das zentrale Ziel, eine in der Simulation trainierte Strategie ohne zusétzliches
Training mit realen Daten direkt zu iibertragen, konnte erreicht werden.

Besondere Herausforderungen wie der Sim-to-Real-Gap traten in Form unerwiinschten
Verhaltens, wie dem Zittern des Korpers und Warten vor dem Schieflen, auf. Diese
Schwierigkeiten konnten durch Finetuning in der Simulation und gezielte Anpas-
sungen im Belohnungsdesign erfolgreich entschérft werden. Damit liefert die Arbeit
ein praxistaugliches Vorgehen, das Zero-Shot-Deployment trotz unvermeidbarer
Diskrepanzen zwischen Simulation und Realitdt ermdoglicht.

Die wesentlichen Beitréige dieser Arbeit lassen sich wie folgt zusammenfassen:

e Entwicklung einer RL-Pipeline fiir das Schieflen auf humanoiden Robotern,
e systematisches Reward-Design als Blaupause fiir dynamische Bewegungen,

e ein einfaches Sim-to-Real-Rezept mit Finetuning zur Reduktion von Trans-
ferproblemen.

Damit konnte gezeigt werden, dass RL ein vielversprechender Ansatz ist, um
hochdynamische, kontinuierliche Bewegungen fiir humanoide Roboter zu reali-
sieren. Das Vorgehen lédsst sich neben dem Schuss auch auf anderes Verhalten
wie Dribbeln oder Torwartbewegungen anwenden. Somit leistet die Arbeit einen
Beitrag zur Weiterentwicklung agiler und anpassungsfahiger Robotersysteme, die
langfristig das Spielgeschehen im Roboterfufiball auf ein neues Niveau heben kénnen
und die Spiele spannender machen.

29

6 AUSBLICK

6 Ausblick

Zentral fiir die Weiterentwicklung werden das Testen der Strategie auf weiteren
T1 Robotern und die Einfithrung eines Evaluationssystems fiir den echten Robo-
ter sein. Dies wird die Robustheit der Strategie priifen. Bis jetzt wurde der Schuss
nur isoliert als einzelne Bewegung betrachtet. Zukiinftig muss ein Schuss im Spiel
selbst funktionieren. Dies sorgt noch einmal fiir ganz andere Herausforderungen
und Anspriiche an Timing, Stabilitit und Genauigkeit. Um dem Roboter mehr
Kontrolle iiber den Schuss zu geben, ist es iiberlegenswert, Parameter einzufiihren,
die Aspekte des Schusses einstellen. Diese konnten etwa die Schussstéarke oder das
Schussziel vorgeben, um den Schuss in diversen Situationen passend einzusetzen.
Zuletzt soll auch weiteres Verhalten mit RL umgesetzt werden. Erste Experimente
mit dem Dribbeln weisen darauf hin, dass dieses Verhalten ebenfalls von RL pro-
fitieren kann. Das Ziel soll sein, das gesamte Verhalten mit RL zu lernen. Dabei
ist es eine offene Frage, ob einzelne Bewegungen getrennt trainiert und von ei-
ner iibergeordneten Strategie koordiniert werden oder direkt ein Gesamtverhalten
Ende-Zu-Ende gelernt wird.

30

Literatur Literatur

Literatur

[1]
2]

RoboCup Federation. “Objective,” RoboCup Federation, besucht am 21. Sep.
2025. Adresse: https://www.robocup.org/objective.

C. S. Lin, P. R. Chang und J. Y.-S. Luh, “Formulation and optimization of
cubic polynomial joint trajectories for industrial robots,” IEEE Transactions
on Automatic Control, Jg. 28, S. 1066-1074, 1983. Adresse: https://api.
semanticscholar.org/CorpusID:119783730.

J. Bobrow, S. Dubowsky und J. Gibson, “Time-Optimal Control of Robotic
Manipulators Along Specified Paths,” The International Journal of Robotics
Research, Jg. 4, Nr. 3, S. 3-17, 1985. pOI: 10.1177/027836498500400301.
eprint: https://doi.org/10.1177/027836498500400301. Adresse: https:
//doi.org/10.1177/027836498500400301.

A. Bockmann und T. Laue, “Kick motions for the NAO robot using dynamic
movement primitives,” in RoboCup 2016: Robot World Cup XX, S. Behnke,
R. Sheh, S. Sariel und D. D. Lee, Hrsg., Cham: Springer International Pu-
blishing, 2017, S. 33-44, 1sBN: 978-3-319-68792-6. DOI: 10.1007/978-3~-
319-68792-6_3.

Y. Ji, G. B. Margolis und P. Agrawal, DribbleBot: Dynamic Legged Manipu-
lation in the Wild, 3. Apr. 2023. DOI: 10.48550/arXiv.2304.01159. arXiv:
2304.01159[cs]. besucht am 3. Okt. 2024. Adresse: http://arxiv.org/
abs/2304.01159.

X. Huang u.a., Creating a Dynamic Quadrupedal Robotic Goalkeeper with
Reinforcement Learning, 10. Okt. 2022. DOT: 10.48550/arXiv.2210.04435.
arXiv: 2210.04435[cs]. besucht am 12. Sep. 2025. Adresse: http://arxiv.
org/abs/2210.04435.

Y. Ji u. a., Hierarchical Reinforcement Learning for Precise Soccer Shooting
Skills using a Quadrupedal Robot, 1. Aug. 2022. DOI: 10 .48550/arXiv .
2208.01160. arXiv: 2208.01160[cs]. besucht am 17. Apr. 2025. Adresse:
http://arxiv.org/abs/2208.01160.

S. Liu u.a., From Motor Control to Team Play in Simulated Humanoid
Football, 25. Mai 2021. DOI: 10.48550/arXiv.2105.12196. arXiv: 2105.
12196 [cs]. besucht am 23. Apr. 2025. Adresse: http://arxiv.org/abs/
2105.12196.

31

https://www.robocup.org/objective
https://api.semanticscholar.org/CorpusID:119783730
https://api.semanticscholar.org/CorpusID:119783730
https://doi.org/10.1177/027836498500400301
https://doi.org/10.1177/027836498500400301
https://doi.org/10.1177/027836498500400301
https://doi.org/10.1177/027836498500400301
https://doi.org/10.1007/978-3-319-68792-6_3
https://doi.org/10.1007/978-3-319-68792-6_3
https://doi.org/10.48550/arXiv.2304.01159
https://arxiv.org/abs/2304.01159 [cs]
http://arxiv.org/abs/2304.01159
http://arxiv.org/abs/2304.01159
https://doi.org/10.48550/arXiv.2210.04435
https://arxiv.org/abs/2210.04435 [cs]
http://arxiv.org/abs/2210.04435
http://arxiv.org/abs/2210.04435
https://doi.org/10.48550/arXiv.2208.01160
https://doi.org/10.48550/arXiv.2208.01160
https://arxiv.org/abs/2208.01160 [cs]
http://arxiv.org/abs/2208.01160
https://doi.org/10.48550/arXiv.2105.12196
https://arxiv.org/abs/2105.12196 [cs]
https://arxiv.org/abs/2105.12196 [cs]
http://arxiv.org/abs/2105.12196
http://arxiv.org/abs/2105.12196

Literatur Literatur

[9]

[10]

[11]

[12]

[13]

[17]

T. Haarnoja u. a., “Learning agile soccer skills for a bipedal robot with deep
reinforcement learning,” Science Robotics, 10. Apr. 2024, Publisher: Ameri-
can Association for the Advancement of Science. DOI: 10.1126/scirobotics.
adi8022. besucht am 3. Okt. 2024. Adresse: https://www.science.org/
doi/10.1126/scirobotics.adi8022.

“Booster T1, Made for Developers,” Booster Robotics, besucht am 21. Sep.
2025. Adresse: https://www.boosterobotics.com/booster-t1/.

Sutikno, “(PDF) an overview of emerging trends in robotics and automa-
tion,” ResearchGate, 24. Juli 2025. DOT: 10.11591/ijra.v12i4 . pp405-
411. besucht am 1. Sep. 2025. Adresse: https://www . researchgate .
net/publication/379231219 _An_overview_of _emerging_trends_in_
robotics_and_automation.

H. Choi u. a., “On the use of simulation in robotics: Opportunities, challen-
ges, and suggestions for moving forward,” Proceedings of the National Acade-
my of Sciences of the United States of America, Jg. 118, Nr. 1, 1907856118,
28. Dez. 2020. DOI: 10.1073/pnas.1907856118. besucht am 1. Sep. 2025.
Adresse: https://pmc.ncbi.nlm.nih.gov/articles/PMC7817170/.

M. Guo, Y. Jiang, A. E. Spielberg, J. Wu und K. Liu, “Benchmarking ri-
gid body contact models,” in Proceedings of The 5th Annual Learning for
Dynamics and Control Conference, ISSN: 2640-3498, PMLR, 6. Juni 2023,
S. 1480-1492. besucht am 20. Sep. 2025. Adresse: https://proceedings.
mlr.press/v211/guo23b.html.

Pixar Animation Studios, OpenUSD Documentation (Universal Scene Des-
cription), https://openusd.org/docs/, Zugriff am 20.09.2025, 2025.

Open Robotics, Unified Robot Description Format (URDF) — XML Spezifi-
kation, https://wiki.ros.org/urdf/XML/model, Version vom 24.03.2023,
Zugriff am 20.09.2025, 2023.

J. Collins, S. Chand, A. Vanderkop und D. Howard, “A review of physics
simulators for robotic applications,” IFEE Access, Jg. 9, S. 51416-51431,
2021, 18SN: 2169-3536. DOI: 10 . 1109 / ACCESS . 2021 . 3068769. besucht
am 1. Sep. 2025. Adresse: https://ieeexplore . ieee . org/document /
9386154/.

S. Anderson, “NSF/NIST/DOD workshop on using modeling and simulation
in robotics: Pre-workshop slides (2018),” 2018.

32

https://doi.org/10.1126/scirobotics.adi8022
https://doi.org/10.1126/scirobotics.adi8022
https://www.science.org/doi/10.1126/scirobotics.adi8022
https://www.science.org/doi/10.1126/scirobotics.adi8022
https://www.boosterobotics.com/booster-t1/
https://doi.org/10.11591/ijra.v12i4.pp405-411
https://doi.org/10.11591/ijra.v12i4.pp405-411
https://www.researchgate.net/publication/379231219_An_overview_of_emerging_trends_in_robotics_and_automation
https://www.researchgate.net/publication/379231219_An_overview_of_emerging_trends_in_robotics_and_automation
https://www.researchgate.net/publication/379231219_An_overview_of_emerging_trends_in_robotics_and_automation
https://doi.org/10.1073/pnas.1907856118
https://pmc.ncbi.nlm.nih.gov/articles/PMC7817170/
https://proceedings.mlr.press/v211/guo23b.html
https://proceedings.mlr.press/v211/guo23b.html
https://openusd.org/docs/
https://wiki.ros.org/urdf/XML/model
https://doi.org/10.1109/ACCESS.2021.3068769
https://ieeexplore.ieee.org/document/9386154/
https://ieeexplore.ieee.org/document/9386154/

Literatur Literatur

[18]

[21]
[22]
23]

[24]

[27]

28]

[29]

C. K. Liu und D. Negrut, “The role of physics-based simulators in robotics,”
Annual Review of Control, Robotics, and Autonomous Systems, Jg. 4, S. 35—
58, Volume 4, 2021 3. Mai 2021, Publisher: Annual Reviews, ISSN: 2573-5144.
DOI: 10.1146/annurev-control-072220-093055. besucht am 1. Sep. 2025.
Adresse: https://www.annualreviews.org/content/journals/10.1146/
annurev-control-072220-093055.

R. S. Sutton und A. G. Barto, “Reinforcement learning: An introduction,”

P. Ladosz, L.. Weng, M. Kim und H. Oh, “Exploration in Deep Reinforcement
Learning: A Survey,” Information Fusion, Jg. 85, S. 1-22, Sep. 2022, 1SSN:
15662535. DOI: 10.1016/j.inffus.2022.03.003. arXiv: 2205.00824 [cs].
besucht am 19. Sep. 2025. Adresse: http://arxiv.org/abs/2205.00824.

J. Kober, J. A. Bagnell und J. Peters, “Reinforcement learning in robotics:
A survey,”

S. Levine, C. Finn, T. Darrell und P. Abbeel, “End-to-end training of deep
visuomotor policies,”

M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, 1994, 1SBN: 978-0471727828.

C. J. C. H. Watkins und P. Dayan, “Q-learning,” Machine Learning, Jg. 8,
Nr. 3-4, S. 279-292, Mai 1992. por1: 10.1007/BF00992698. Adresse: https:
//link.springer.com/article/10.1007/BF00992698.

T. P. Lillicrap u. a., “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015. arXiv: 1509.02971 [cs.LG]. Adres-
se: https://arxiv.org/abs/1509.02971.

T. Haarnoja u.a., Soft Actor-Critic Algorithms and Applications, 29. Jan.
2019. DOI: 10.48550/arXiv.1812.05905. arXiv: 1812.05905[cs]. besucht
am 1. Sep. 2025. Adresse: http://arxiv.org/abs/1812.05905.

T. Haarnoja, A. Zhou, P. Abbeel und S. Levine, “Off-policy maximum entro-
py deep reinforcement learning with a stochastic actor,”

D. Han, B. Mulyana, V. Stankovic und S. Cheng, “A survey on deep re-
inforcement learning algorithms for robotic manipulation,” Sensors, Jg. 23,
Nr. 7, S. 3762, Jan. 2023, Publisher: Multidisciplinary Digital Publishing In-
stitute, 1SSN: 1424-8220. DOI: 10.3390/s23073762. besucht am 1. Sep. 2025.
Adresse: https://www.mdpi.com/1424-8220/23/7/3762.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford und O. Klimov, Proximal
Policy Optimization Algorithms, 28. Aug. 2017. DOI: 10 . 48550/ arXiv .
1707 . 06347. arXiv: 1707 . 06347 [cs]. besucht am 1. Sep. 2025. Adresse:
http://arxiv.org/abs/1707.06347.

33

https://doi.org/10.1146/annurev-control-072220-093055
https://www.annualreviews.org/content/journals/10.1146/annurev-control-072220-093055
https://www.annualreviews.org/content/journals/10.1146/annurev-control-072220-093055
https://doi.org/10.1016/j.inffus.2022.03.003
https://arxiv.org/abs/2205.00824 [cs]
http://arxiv.org/abs/2205.00824
https://doi.org/10.1007/BF00992698
https://link.springer.com/article/10.1007/BF00992698
https://link.springer.com/article/10.1007/BF00992698
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.48550/arXiv.1812.05905
https://arxiv.org/abs/1812.05905 [cs]
http://arxiv.org/abs/1812.05905
https://doi.org/10.3390/s23073762
https://www.mdpi.com/1424-8220/23/7/3762
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://arxiv.org/abs/1707.06347 [cs]
http://arxiv.org/abs/1707.06347

Literatur Literatur

[30]

[34]

[35]

[37]

L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba und P. Abbeel, “Asym-
metric actor critic for image-based robot learning,” in Robotics: Science and
Systems XIV, Robotics: Science und Systems Foundation, 26. Juni 2018,
ISBN: 978-0-9923747-4-7. DOI: 10.15607 /RSS.2018.XIV.008. besucht am
8. Sep. 2025. Adresse: http://www.roboticsproceedings . org/rssi4/
p08.pdf.

OpenAl u. a., Learning Dexterous In-Hand Manipulation, 18. Jan. 2019. DOTI:
10.48550/arXiv.1808.00177. arXiv: 1808.00177 [cs]. besucht am 2. Sep.
2025. Adresse: http://arxiv.org/abs/1808.00177.

M. Andrychowicz u.a., “Learning Dexterous In-Hand Manipulation,” The
International Journal of Robotics Research, Jg. 39, Nr. 1, S. 3-20, 2020. DOI:
10.1177/0278364919887447. Adresse: https://matthiasplappert.com/
publications/2020_OpenAI_Dexterous-Manipulation_IJRR.pdf.

N. Rudin, D. Hoeller, P. Reist und M. Hutter, “Learning to Walk in Minutes
Using Massively Parallel Deep Reinforcement Learning,” in Proceedings of
the 5th Conference on Robot Learning (CoRL), Ser. Proceedings of Machine
Learning Research, Bd. 164, PMLR, 2022, S. 91-100. Adresse: https://
proceedings.mlr.press/v164/rudin22a.html.

F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger und J. Peters, “Robot
Learning From Randomized Simulations: A Review,” Frontiers in Robotics
and AL Jg. 9, 11. Apr. 2022, Publisher: Frontiers, 1SSN: 2296-9144. DOI:
10.3389/frobt.2022.799893. besucht am 3. Okt. 2024. Adresse: https:
//www . frontiersin. org/journals/robotics-and-ai/articles/10.
3389/frobt.2022.799893/full

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba und P. Abbeel, Domain
Randomization for Transferring Deep Neural Networks from Simulation to
the Real World, 20. Méarz 2017. DOI: 10.48550/arXiv.1703.06907. arXiv:
1703.06907 [cs]. besucht am 1. Sep. 2025. Adresse: http://arxiv.org/
abs/1703.06907.

J. Collins, D. Howard und J. Leitner, “Quantifying the Reality Gap in Ro-
botic Manipulation Tasks,” in 2019 International Conference on Robotics
and Automation (ICRA), ISSN: 2577-087X, Mai 2019, S. 6706-6712. DOTI:
10.1109/ICRA.2019.8793591. besucht am 14. Okt. 2024. Adresse: https:
//ieeexplore.ieee.org/document/8793591.

M. Tiboni, A. Borboni, F. Vérité, C. Bregoli und C. Amici, “Sensors and
Actuation Technologies in Exoskeletons: A Review,” Sensors (Basel, Swit-
zerland), Jg. 22, Nr. 3, S. 884, 24. Jan. 2022, 1sSSN: 1424-8220. DOI: 10.3390/
$22030884. besucht am 3. Sep. 2025. Adresse: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC8839165/.

34

https://doi.org/10.15607/RSS.2018.XIV.008
http://www.roboticsproceedings.org/rss14/p08.pdf
http://www.roboticsproceedings.org/rss14/p08.pdf
https://doi.org/10.48550/arXiv.1808.00177
https://arxiv.org/abs/1808.00177 [cs]
http://arxiv.org/abs/1808.00177
https://doi.org/10.1177/0278364919887447
https://matthiasplappert.com/publications/2020_OpenAI_Dexterous-Manipulation_IJRR.pdf
https://matthiasplappert.com/publications/2020_OpenAI_Dexterous-Manipulation_IJRR.pdf
https://proceedings.mlr.press/v164/rudin22a.html
https://proceedings.mlr.press/v164/rudin22a.html
https://doi.org/10.3389/frobt.2022.799893
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.799893/full
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.799893/full
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.799893/full
https://doi.org/10.48550/arXiv.1703.06907
https://arxiv.org/abs/1703.06907 [cs]
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1703.06907
https://doi.org/10.1109/ICRA.2019.8793591
https://ieeexplore.ieee.org/document/8793591
https://ieeexplore.ieee.org/document/8793591
https://doi.org/10.3390/s22030884
https://doi.org/10.3390/s22030884
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839165/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839165/

Literatur Literatur

[38]

[39]

[40]

[41]

[42]

[43]

Y. Wang, P. Chen, X. Han, F. Wu und M. Zhao, “Booster Gym: An End-to-
End Reinforcement Learning Framework for Humanoid Robot Locomotion,”
arXw preprint arXiww:2506.15152, 2025.

V. Makoviychuk u.a., Isaac Gym: High Performance GPU-Based Physics
Stmulation For Robot Learning, 25. Aug. 2021. DOT: 10.48550/arXiv.2108.
10470. arXiv: 2108.10470[cs]. besucht am 3. Sep. 2025. Adresse: http:
//arxiv.org/abs/2108.10470.

L. Biewald, Ezperiment Tracking with Weights € Biases, https://www .
wandb.com/, Software available from wandb.com, 2020.

W. Zhao, J. P. Queralta und T. Westerlund, “Sim-to-Real Transfer in Deep
Reinforcement Learning for Robotics: a Survey,” CoRR, Jg. abs/2009.13303,
2020. arXiv: 2009.13303. Adresse: https://arxiv.org/abs/2009.13303.

E. Ratner, D. Hadfield-Menell und A. D. Dragan, “Simplifying Reward De-
sign through Divide-and-Conquer,” CoRR, Jg. abs/1806.02501, 2018. arXiv:
1806.02501. Adresse: http://arxiv.org/abs/1806.02501.

C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Martin-Martin und P.
Stone, Deep Reinforcement Learning for Robotics: A Survey of Real-World
Successes, 2024. arXiv: 2408 .03539 [cs.R0O]. Adresse: https://arxiv.
org/abs/2408.03539.

35

https://doi.org/10.48550/arXiv.2108.10470
https://doi.org/10.48550/arXiv.2108.10470
https://arxiv.org/abs/2108.10470 [cs]
http://arxiv.org/abs/2108.10470
http://arxiv.org/abs/2108.10470
https://www.wandb.com/
https://www.wandb.com/
https://arxiv.org/abs/2009.13303
https://arxiv.org/abs/2009.13303
https://arxiv.org/abs/1806.02501
http://arxiv.org/abs/1806.02501
https://arxiv.org/abs/2408.03539
https://arxiv.org/abs/2408.03539
https://arxiv.org/abs/2408.03539

A ZUSATZMATERIAL

A Zusatzmaterial

Tabelle A.1: Beobachtungen des Actors (normalisiert und ggf. verrauscht gemés

Dim. Bezugssystem

Kurzbeschreibung

Konfiguration).
GroBe
Projizierte Gravitation 3
Ebase
Actorkorper- 3
Winkelgeschw. whaee
Relative Ballposition 2
(l‘7 y)’ pigll/base
Gelenkwinkel-Offset 23
q—9o
Gelenkgeschwindigkeiten 23
q
Aktionen a 12

Actor

Actor

Actor

Gelenkraum

Gelenkraum

Orientierungs-Surrogat: Gravi-
tationsvektor in Actor-KS; op-
tional Rauschen & Normierung.

Aktuelle Winkelgeschwindig-
keit; optional Rauschen &
Normierung.

Ballposition relativ zur Actor
(nur z,y); optional Rauschen &
Normierung.

Abweichung zu Default-
Winkeln; optional Rauschen &

Normierung.
Aktuelle DOF-
Geschwindigkeiten; optional

Rauschen & Normierung.
Letzte Aktor-Kommandos (be-
reits auf £a.;, begrenzt).

36

A ZUSATZMATERIAL

Tabelle A.2: Privilegierte Beobachtungen (nur Critic).

GrofBle Dim. Bezugssystem Kurzbeschreibung

Actor-COM-Offsets & 4 — Randomisierungsgrofien fiir Ac-

Massenskalierung tor (COM =z, y, z und Masse).

Actor-Linear- 3 Actor Aktuelle lineare Geschwindig-

geschwindigkeit Viase keit; optional Rauschen & Nor-
mierung.

Actorhohe h iiber 1 Welt z-Abstand der Actor zur Ter-

Terrain rainhohe; optional Rauschen &
Normierung.

Ball-Linearge- 2 Welt Ballgeschwindigkeit (nur z,y);

schwindigkeit (x,y) roh (ohne Rauschen/Normie-
rung).

FuBposition links (z,y) 2 Welt Position des linken Fufles in
x,1y; roh.

FuBiposition rechts (z, y) 2 Welt Position des rechten Fufles in
x,1; roh.

Externe Schubkréfte 3 lokaler Actor Auf die Actor wirkende Krifte;

foush mit Normierung.

Externe Schubmomente 3 lokaler Actor Auf die Actor wirkende Mo-

T push

mente; mit Normierung.

37

8¢

Tabelle A.3: Domain Randomization: Verteilungen/Intervalle, Anwendungsmomente und Erlduterungen (At =

0.02s).

Randomisierung

Formel

Anwendung

Kurzbeschreibung

DOF-Startwinkel

Basis-Yaw

Basis-Linear-
geschwindigkeit x, y

Ball-Startposition relativ
vor Roboter

Aktuationsverzogerung

qo < Qdef +N(0702)7 o€
[0,0.05]

o < 0+ N(0,0?), 0€[0,0.1]
Vouy < 0+ N(0,0%), o€

0,0.1]

dy ~U[0.25,04], d, ~
U[0,0.2]

§€{0,...,9}-0.002s

Bei jedem Reset

Bei jedem Reset

Bei jedem Reset

Bei jedem Reset

Bei jedem Reset

qo sind die initialen Gelenkwin-
kel (rad), qqer die Default-Pose;
o ist die Standardabweichung
des additiven Gaufl-Rauschens.
1 ist der anfangliche Gierwin-
kel um die Vertikalachse (rad);
o bestimmt die Streuung.

Voazy € R? ist die anfingliche
planare Lineargeschwindigkeit
(m/s); o ist die Rauschstérke.
d, (Vorwérts-) und d, (Seit-
)Offset relativ zum Roboter;
Platzierung vor dem linken Fuf}
im Roboter-KS, vertikal auf Bo-
denniveau plus Ballradius r =
0,05 m.

0 ist die Verzogerung der Ak-
tionsweitergabe (0-9 Physik-
Substeps = 0-0.018s).

Fortsetzung auf der néchsten Seite

TVIHALVINZILVSNZ V

6€

Fortsetzung von Tab. A.3

Randomisierung

Formel

Anwendung

Kurzbeschreibung

Beobachtungsrauschen:
Gravitation

Beobachtungsrauschen:
Basis-Lin./Ang.-Geschw.

Beobachtungsrauschen:
Hohe

Beobachtungsrauschen:
Ball-Relativposition (2D)

Beobachtungsrauschen:

DOF-Offsets/Geschw.

PD-Gains (pro DOF)

g <+ g+N(0,0%), 0€[0,0.01]

v < v+N(0,0?), 0€]0,0.05);
w+ w+N(0,0%), c€[0,0.1]

h <+ h+N(0,0?), 0€[0,0.02]

p% « p% + N(0,02), o€

[0,0.01]

Aq + Aq+N(0,0%), o€

[0,0.01];

q < q+N(0,0%), 0€[0,0.1]

K, K,-s, s~
U[0.95,1.05]; K4 <
Ky-s', s'~U[0.95,1.05]

Jeder
Simulationsschritt

Jeder

Simulationsschritt

Jeder
Simulationsschritt

Jeder
Simulationsschritt

Jeder
Simulationsschritt

Bei Initialisierung

g € R? ist der (projizierte) Gra-
vitationsvektor; o ist die Stan-
dardabweichung des additiven
Rauschens.

v € R? ist die lineare Ge-
schwindigkeit (m/s), w € R3
die Winkelgeschwindigkeit (ra-
d/s); o gibt die Rauschstérke an.
h ist die Basis-Hohe iiber Ter-
rain (m); o ist die Standardab-
weichung des Rauschens.

p*” = (x,y) ist die Ballpo-
sition relativ zum Roboter in
der Ebene (m); o bestimmt die
Rauschstérke.

Aq sind Gelenk-Offsets zur
Default-Pose (rad), q Gelenkge-
schwindigkeiten (rad/s); o sind
die jeweiligen Rauschstérken.
K, Proportional-Steifigkeit,
K, Dampfung; s,s’" sind un-
abhéngige uniforme Skalenfak-
toren.

Fortsetzung auf der néchsten Seite

TVIHALVINZLVSNZ 'V

0¥

Fortsetzung von Tab. A.3

Randomisierung

Formel

Anwendung

Kurzbeschreibung

DOF-Reibung (pro
DOF)

FuBkontakt-
Eigenschaften (Shapes)
Basiskorper:

Schwerpunkt & Masse

Andere Korper:
Schwerpunkt & Masse

o o+ u, u~U[0,2.0]

p~U0.1,20], ¢~
U[0.5,1.5], e~u[0.1,0.9]

C <

c+U([-0.1,0.1]3); m <+
m-s, s~U[0.8,1.2]

C;, < C; +
U([~0.005,0.0053); m; +
m; - s, s~U[0.98,1.02]

Bei Initialisierung

Bei Initialisierung

Bei Initialisierung

Bei Initialisierung

p ist die (trockene) Gelenkrei-
bung (dimensionslos); u ist eine
uniforme additive Komponente.
1 Reibungskoeffizient, ¢ effekti-
ve Compliance/Weichheit, e Re-
stitutionskoeffizient (Elastizitét
beim StoB).

¢ € R3 Schwerpunktlage (m) des
Basiskorpers; m dessen Masse; s
positiver Skalierungsfaktor.

c; (m) und m; sind Schwer-
punkt und Masse jedes nicht-
basalen Korpers; kleinere Ampli-
tuden als beim Basiskorper.

TVIHALVINZILVSNZ V

v

Tabelle A.4: Belohnungsterme mit Skalierung der Finetuningiterationen (FT). Negative Skalen wirken als Bestra-

fungen. ,—¢ = nicht vorhanden. Werte in Klammern entsprechen der Skalierung in Phase 2 (Schuss)
Name Formel Base FT Zit- FT Beschreibung
tern Warten

Ballgeschwindigkeit — r = clip((vp- 10) 10 vp: Ballgeschwindigkeit; d:

in Zielrichtung &) e~tron/T (), Umax) Einheitsvektor Ball—Ziel;
tron: Zeit seit Rollbeginn; 7:
Zerfallszeit; vna.: Kappung.
Hauptterm fiir ,starken
Schuss“.

Ballbeschleunigung r = 0.25 0.15 0.25 ag,a,: Ballbeschleunigungs-

in Zielrichtung T'max tanh(max (0, a, — Komponenten

lay|)/s) (vorwarts/lateral); s: Skala;

Tmax: Kappung.

Annéherung r= 10 10 10 drp: kleinster Fuf3-Ball-

Fuf-Ball (Ball ruht) clip(exp(—drp/0prox) (0) (0) (0) Abstand; op0x: Néhe-Skala;

,0, Tmax) rmax: Obergrenze. Inaktiv in

Schussphase

Korperausrichtung r= clip(exp((cos O — 1 1 1 0 ic1: Winkel ZW.

fiir Schuss 1)/ 0) ,0, rma,g Vorwértsrichtung und Ziel,
o: Empfindlichkeit; 7p.x:
Kappung.

Uberleben r=1 1 0.5 0.25 Konstante Belohnung pro

(0.5) Schritt.

Fortsetzung auf der néchsten Seite

TVIHALVINZLVSNZ 'V

41

Name Formel Base FT Zit- FT Beschreibung
tern Warten
Warten r= (%)2 — — — t: vergangene Zeit; T Re-
(0) ferenz (Skalierung durch

»Episode-Progress-Faktor).
Inaktive wahrend Schusspha-
se.

Tracking lin. r= exp(—v2/ a) 1 1 1 v, Vorwéartsgeschwindigkeit

Geschw. (x) des Oberkorpers; o: Breite
der GauB-Glattung. Belohnt
kleine |v]|.

Tracking lin. r= exp(— vj / a) 1 1 1 vy Seitwirtsgeschwindigkeit

Geschw. (y) des Oberkérpers; o: Breite der
GauB-Glattung.

Tracking rot. r= exp(— wf/a) 0.25 0.25 0.25 Wy Yaw-

Geschw. (yaw) Winkelgeschwindigkeit — des
Oberkorpers; o: Breite.
Belohnt kleine |w,|.

Oberkérperhohe r = (h — h*)? —200 —200 —200 h: Oberkérperhohe; h* =
0,68 m Zielhche. Quadratische
Abweichungsstrafe.

Orientierung r=g>+ 932/ —20 —20 —20 9z, Gy Anteile des Gravita-

(Kippung) tionsvektors im Korper-KS

(x/y). Bestraft Schréglage.

Fortsetzung auf der néchsten Seite

TVIHALVINZILVSNZ V

157

Name Formel Base FT Zit- FT Beschreibung
tern Warten

Drehmomente r=>y.7} -1-100* —=3-100* —2:100* 7 Motordrehmoment im
DOF 1; glattet energiereiche
Befehle.

Drehmoment- r= —0.01 —0.01 —0.01 7,7 zulédssiges Motormaxi-

» Miidigkeit > min ((|7]/7m)2, 1) mum; bestraft Nihe zum Li-
mit (Sattigung bei 1).

Leistung r =), max(7 ¢, 0) —0.001 —0.002 —0.002 Gi: Gelenkgeschwindigkeit.

(-0.002) Bestraft positive (eingespeis-

te) Leistung.

Lin. Geschw. z r =2 —1.5 —1.5 -1.5 v.: Vertikalgeschwindigkeit
des Oberkorpers.

Rot. Geschw. z,y r=w?+ wj —0.1 —0.1 —0.1 Wy, Wy Roll- /Pitch-
Winkelgeschwindigkeit.

Gelenkgeschwindigkeit r = 3. ¢? -3-107* -3.107* —-3-107%* ¢ DOF-Geschwindigkeit;
démpft schnelle Bewegungen.

Gelenkbeschleunigung r = >, ((¢; — Q?lt)/At)Q —1-1077 —1-1007 —1-107" ¢*%: Vorwert; At: Zeitschritt.
Déampft Ruck.

Basis- r= H(VbaSe - valt)/AtH2 —1-107® —1-107% —1-107% wvP">° lineare Oberkérper-

Beschleunigung Geschwindigkeit; v*: Vor-
wert.

Aktionsrate r=> (a; —a;_1)* —0.25 —1.5 -1.5 a;: Aktionsvektor im Schritt ¢;

(-0.5) (-0.5) gliattet Kommandos.

Fortsetzung auf der néchsten Seite

TVIHALVINZLVSNZ 'V

v

Name Formel Base FT Zit- FT Beschreibung
tern Warten

Gelenkpositions- r=> W{|¢| > Limit} -1 -1 -1 ¢i: Gelenkwinkel; Indikator-

Limits strafe bei Uberschreitung wei-
cher Grenzen.

Gelenkgeschw .- r=>Y max(|¢| — ¢, 0) 0 0 0 qmex: erlaubte DOF-

Limits Geschwindigkeit; hier inaktiv.

Drehmoment-Limits 7 = > max(|r;| — 7", 0) 0 0 0 (P Drehmomentgrenze;
hier inaktiv.

Kollisionen r= -1 -1 -1 Indikatorstrafe fiir Kontakte

> ¥ {Kontakt verb. Teile} auf definierten Robotorteilen

(Rumpf/GliedmaBen).

FuB-Schlupf (bei r=>. | pF“BA;f%l“tﬁ ? —0.2 -1 -1 Prug: FuBposition; reduziert

Kontakt) Gleiten am Boden.

FuB-Vertikalgeschw. 7= 075 0 0 0 v, pug: vertikale FuBigeschwin-
digkeit; hier inaktiv.

FuB-Rollwinkel r=> 0%, —0.3 —0.3 —0.3 oron: Rollwinkel der Fiifle re-
lativ Boden.

FuB-Yaw-Differenz r = (wrap(yg — ¢ L))2 -1 -3 -3 V1R Yaw-Ausrichtung
link /rechts; wrap: Winkel in
(—m, 7.

FuB-Yaw-Mittel vs. = —1 -3 -3 YBody: Yaw des Oberkdrpers;

Korper

T
2
(Wrap (wBody — ;wR))

bestraft verdrehte Fuflstel-

lung.

Fortsetzung auf der néchsten Seite

TVIHALVINZILVSNZ V

Gy

Name Formel Base FT Zit- FT Beschreibung

tern Warten
Korperwinkel r:m—l 0.25 0.1 0.1 ¢: Roll; 6: Pitch des
(Pitch/Roll) Oberkoérpers; kleine Win-

kel werden belohnt.

TVIHALVINZLVSNZ 'V

A ZUSATZMATERIAL

Tabelle A.6: Optimizer- und Trainingsparameter

Grofle Wert Erlauterung

Optimierungsverfahren Adam Standard-Optimizer fiir sto-
chastische Gradientenverfahren
in kontinuierlichen Steuerauf-
gaben.

Lernrate (Start) 1x107° Anfangswert fiir die Schritt-

LR-Anpassung nach
KL-Abweichung

Gradienten-Clipping (global)

Entropie-Gewichtung

Begrenzungs-Term fiir
Mittelwerte

Wertfunktions-Verlust

Discountfaktor

GAE-Glattung (\)

Faktor 1.5 um
Ziel-KL 0.01

1.0 (L2-Norm)

—0.01

aktiv (auf

[—1,1])

MSE

0.995

0.95

weite der Parameteraktualisie-
rung.

Erhoht/senkt die Lernra-
te, wenn die mittlere KL-
Divergenz deutlich unter/iiber

dem Ziel liegt (stabilisiert
Policy-Updates).

Begrenzung der Gradien-
tenldinge zur Vermeidung

numerischer Instabilitdten und
Explodierender Gradienten.
Negativer Koeffizient im Ver-
lust: fordert hohere Entropie
der Policy (explorativere Aktio-
nen).

Quadratische Strafe, falls
die Aktionsmittelwerte den
zuléissigen Bereich verlassen;
verhindert Sattigung auflerhalb
des Intervalls.

Quadratischer Fehler zwischen
geschiatztem Wert und Ziel-
Riickgabe.

Gewichtet zukiinftige Beloh-
nungen; nahe 1 fiir langfristige
Ziele.

Bias—Varianz-Abwigung in der
Vorteilsschitzung (Generalized
Advantage Estimation).

Fortsetzung auf der néchsten Seite

46

A ZUSATZMATERIAL

Grofle

Wert

Erlauterung

Normierung der Vorteile

Rollout-Lénge

Optimierungsdurchléufe pro
Update

Speicherintervall

Maximale Updates

z-Score

24 Schritte
(~ 0.485)

20
Mini-Epochen

alle 100
Updates
10,000

Zentrierung und Skalierung der
Vorteile je Batch (Numerik-
stabiler PPO-Update).

Anzahl Schritte pro Sammlung
vor einem Update; Zeit basie-
rend auf 0.02s pro Schritt.
Wie oft {iber denselben
Rollout-Batch iteriert wird
(Datenwiederverwendung).
Periodisches ~ Sichern von
Checkpoints/Logs.

Obergrenze fiir die Anzahl
Training-Iterationen.

Tabelle A.7: Simulationsparameter fiir den Schuss-Task in Isaac Gym.

Parameter

Wert

Beschreibung

Physik-Zeitschritt (pro
Substep)
Aktualisierungsintervall der
Aktionen

Abgeleitet: Zeit pro
RL-Schritt

Schwerkraft (Welt)

Physik-Engine / Solver

Solver-Iterationen

0.002s

10 Substeps

0.02s

(0,0,—9.81) m/s?

PhysX (TGS)

Pos: 4, Vel: 1

Zeitinkrement, mit dem PhysX
die Dynamik integriert.

So lange wird eine vom Ac-
tor gelieferte Aktion gehal-
ten, bevor die néchste an die
Tensor-API/PhysX weitergege-
ben wird (Action-Haltezeit).
Zeit zwischen zwei Policy-
Aktionen (Aktualisierungsin-
tervall x Physik-Zeitschritt).
Gravitationsbeschleunigung; Z-
Achse zeigt nach oben.
GPU-basierte Kollision und
Dynamik; TGS-Solver fiir
stabile Kontakte.
Iterationszahlen zur Auflésung
von Positions- bzw. Geschwin-
digkeitsnebenbedingungen je
Schritt.

Fortsetzung auf der néichsten Seite

47

A ZUSATZMATERIAL

Parameter Wert Beschreibung
Kontaktparameter Kontakt-Offset Einstellungen fiir die Kontak-
0.02m, tentstehung bzw. das ,Rasten*

Gelenkregelung (PD)

Skalierung der Aktionen

Bodenmodell
(Reibung/Elastizitét)

Parallelisierte Umgebungen

Beobachtungen des Actors

Zusatzbeobachtungen (nur
Wertfunktion)

Aktionsraum
(kontinuierlich)
Startpose des Roboters

Rest-Offset 0 m
K, =

{200, 200, 50},
K;={5,51}

1.0

44
20

12

Hoéhe =~ 0.72m

von Kontakten.

Proportional- und
Déampfungsanteile fiir
Hiifte/Knie/Sprunggelenk;
bestimmen die resultierenden
Stellmomente.

Faktor, mit dem die vom Actor
ausgegebenen Kommandos in
Stellgréfen/Drehmomente um-
gesetzt werden.

Reibung und
Riickprallelastizitéit der ebenen
Umgebung.

Anzahl gleichzeitig simulierter,
physikalisch getrennter Umge-
bungen (kein Austausch zwi-
schen ihnen).

Lange des Beobachtungsvek-
tors, der der Lernumgebung pro
Schritt bereitgestellt wird.
Privilegierte Gréflen, die aus-
schliefllich der Critic verwen-
det.

Anzahl kontinuierlicher Stell-
grofen, die der Actor ausgibt.
Ausgangslage des Basiskorpers;

weitere Startgrofien werden
beim Zuriicksetzen einer
Umgebung zuféllig erzeugt

(Domain Randomization).

48

A ZUSATZMATERIAL

Tabelle A.5: Abbruchbedingungen mit formaler Definition und Kurzbeschreibung
(At =0.025s).

Bedingung

Formel

Kurzbeschreibung

Sturz / niedrige
Rumpfthohe

Zau hohe
Basisgeschwindigkeit

Erfolgsabbruch: Ball
rollt lang genug

Ball zu lange still

Ball zu lange in
Bewegung

Episoden-Timeout

h:= Zbase — hterrain <
0.45m

§ = HvbaseH2 + H‘"’baseH2 >

50

VT € 0,25] :
Upalle(t —7) > 0.1m/s

VT e [0,25] :
||Vball<t — 7')“ S 0.1 H’l/S

VT € [0,5s] :
[Vban(t — 7)|| > 0.1m/s

t>7s (bzw. Ngeps >
[7/At] = 350)

49

Abbruch, wenn die
Rumpfhohe h unter
0,45m fallt. Dabei ist
Zhase die Hohe des Actor-
Basiskorpers (Oberkérper)
in Welt-z und hierrain die
Terrainoberfliche an der
Standposition.

Abbruch, wenn das kom-
binierte Geschwindigkeits-
mafl s den Grenzwert 50
iiberschreitet. Hierbei ist
Viase die lineare Geschwin-
digkeit des Oberkorpers
und wyp,se dessen Winkelge-
schwindigkeit.

Abbruch im Erfolgsfall:
Die Ballgeschwindigkeit in
z-Richtung wvpan, bleibt
durchgéngig langer als 2s
tiber 0,1 m/s. t ist die aktu-
elle Zeit; dies entspricht ca.
100 Steps bei At = 0.02s.
Abbruch, wenn der Ball
mindestens 2s praktisch
stillsteht. vy, € R? st
die Ballgeschwindigkeit
in Weltkoordinaten, und
0,1 m/s definiert den ,still “-
Schwellenwert (=~ 100
Steps).

Abbruch, wenn der Ball
langer als 5s rollt. vpan
wie oben; 0,1m/s ist der
Bewegungs-Schwellenwert
(= 250 Steps).

Abbruch nach Erreichen der
maximalen Episodendauer.
t ist die verstrichene Epi-
sodenzeit, Ngeps die Anzahl
Simulationsschritte (At =
0.02s = 350 Steps).

A ZUSATZMATERIAL

Tabelle A.8: Schichtweiser Aufbau der Actor—Critic-Architektur. ng.,s = Anzahl
Beobachtungen, npi, = Anzahl privilegierter Beobachtungen, n,. =
Anzahl Aktionen.

Netz Schicht Typ Eingabe = Ausgabe Bemerkung
Critic 1 Linear Nobs + Mpriv 256 Eingabe ist
[obs, priv]
2 ELU 256 256
3 Linear 256 256
4 ELU 256 256
5) Linear 256 128
6 ELU 128 128
7 Linear 128 1 Skalarer Wert
Vi(s)
Actor 1 Linear Nobs 256
2 ELU 256 256
3 Linear 256 128
4 ELU 128 128
5) Linear 128 128
6 ELU 128 128
7 Linear 128 Nact Ausgabematrix
der Mittelwerte
I"’ c Rnact
8 (Parameter) - Nact Trainierbarer
Vektor
logo € R7eet
initialisiert
mit —2.0;
o = exp(logo)
9 Policy - Stochastische Po-

litik: w(a | s) =
N(u(s). ding(0?))

50

A ZUSATZMATERIAL

Eidesstattliche Erklirung

Hiermit erklare ich, dass ich die vorliegende Arbeit mit dem Titel ,, Von der Simu-
lation aufs Spielfeld: Reinforcement Learning fiir dynamische Schussbewegungen
im Roboterfufiball“ selbststdndig und ohne unerlaubte Hilfe angefertigt habe. Alle
verwendeten Quellen sind kenntlich gemacht. Die Arbeit wurde in gleicher oder
dhnlicher Form keiner anderen Priifungsbehérde vorgelegt.

Leipzig, 22. September 2025 ///

Felix Loos /

ol

	Kurzfassung
	Einleitung
	Zielsetzung

	Grundlagen
	Simulation
	Anforderungen an Simulationen
	Funktionsweise von Simulationen

	Reinforcement Learning
	Reinforcement Learning für Verhalten von Robotern
	Reinforcement Learning Algorithmen
	Übertragung in die Realität

	Booster T1 Roboter
	Aufbau des Roboters

	Methodik
	Simulation
	Aufbau der Simulation
	Umgebung und Robotermodell
	Domain Randomization

	Training
	Ablauf des Trainigs
	Implementierung
	Trainingsüberwachung

	Lernsignale
	Belohungsdesign
	Evaluationsstrategien
	Abbruchbedingungen

	Sim-to-Real
	Set-up auf dem Roboter
	Sim-to-Real-Transfer

	Diskussion
	Fazit
	Ausblick
	Zusatzmaterial
	Eidesstattliche Erklärung

